Livet Jean, Weissman Tamily A, Kang Hyuno, Draft Ryan W, Lu Ju, Bennis Robyn A, Sanes Joshua R, Lichtman Jeff W
Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2007 Nov 1;450(7166):56-62. doi: 10.1038/nature06293.
Detailed analysis of neuronal network architecture requires the development of new methods. Here we present strategies to visualize synaptic circuits by genetically labelling neurons with multiple, distinct colours. In Brainbow transgenes, Cre/lox recombination is used to create a stochastic choice of expression between three or more fluorescent proteins (XFPs). Integration of tandem Brainbow copies in transgenic mice yielded combinatorial XFP expression, and thus many colours, thereby providing a way to distinguish adjacent neurons and visualize other cellular interactions. As a demonstration, we reconstructed hundreds of neighbouring axons and multiple synaptic contacts in one small volume of a cerebellar lobe exhibiting approximately 90 colours. The expression in some lines also allowed us to map glial territories and follow glial cells and neurons over time in vivo. The ability of the Brainbow system to label uniquely many individual cells within a population may facilitate the analysis of neuronal circuitry on a large scale.
对神经网络结构进行详细分析需要开发新方法。在此,我们展示了通过用多种不同颜色对神经元进行基因标记来可视化突触回路的策略。在Brainbow转基因中,Cre/lox重组用于在三种或更多荧光蛋白(XFPs)之间随机选择表达。在转基因小鼠中整合串联的Brainbow拷贝可产生组合的XFP表达,从而产生多种颜色,进而提供了一种区分相邻神经元并可视化其他细胞相互作用的方法。作为一个示例,我们在一个小体积的小脑叶中重建了数百个相邻轴突和多个突触连接,展示了大约90种颜色。在某些品系中的表达还使我们能够绘制胶质细胞区域,并在体内随时间追踪胶质细胞和神经元。Brainbow系统在群体中独特标记许多单个细胞的能力可能有助于大规模分析神经元回路。