Fernandes Elisabete, Pacheco António, Penha-Gonçalves Carlos
Centre for Mathematics and Its Applications, IST-Technical University of Lisbon, 1049-001, Lisboa, Portugal.
J Zhejiang Univ Sci B. 2007 Nov;8(11):792-801. doi: 10.1631/jzus.2007.B0792.
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.
在数量性状基因座(QTL)的标准区间作图(IM)中,QTL效应由正态混合模型描述。当这种正态性假设不成立时,最常用的策略是在数据变换后使用先前的模型。然而,可能不存在合适的变换,或者可能难以找到。而且这种方法会引发解释问题。一个有趣的替代方法是在标准IM中考虑偏态正态混合模型,由此产生的方法在这里记为偏态正态IM。这个灵活的模型将通常的对称正态分布作为特殊情况包含在内,很重要,它允许从正态到非正态的连续变化。在本文中,我们简要介绍偏态正态分布的主要特点。偏态正态分布参数的最大似然估计通过期望最大化(EM)算法获得。用来自一个杂交实验的真实数据对所提出的模型进行说明,该数据显示出明显偏离正态性假设。通过随机模拟评估偏态正态IM的性能。结果表明,与标准IM和非参数IM相比,偏态正态IM在QTL检测方面具有更高的功效,在QTL定位方面具有更高的精度。