Suppr超能文献

使用偏态正态分布进行数量性状基因座定位。

Mapping of quantitative trait loci using the skew-normal distribution.

作者信息

Fernandes Elisabete, Pacheco António, Penha-Gonçalves Carlos

机构信息

Centre for Mathematics and Its Applications, IST-Technical University of Lisbon, 1049-001, Lisboa, Portugal.

出版信息

J Zhejiang Univ Sci B. 2007 Nov;8(11):792-801. doi: 10.1631/jzus.2007.B0792.

Abstract

In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.

摘要

在数量性状基因座(QTL)的标准区间作图(IM)中,QTL效应由正态混合模型描述。当这种正态性假设不成立时,最常用的策略是在数据变换后使用先前的模型。然而,可能不存在合适的变换,或者可能难以找到。而且这种方法会引发解释问题。一个有趣的替代方法是在标准IM中考虑偏态正态混合模型,由此产生的方法在这里记为偏态正态IM。这个灵活的模型将通常的对称正态分布作为特殊情况包含在内,很重要,它允许从正态到非正态的连续变化。在本文中,我们简要介绍偏态正态分布的主要特点。偏态正态分布参数的最大似然估计通过期望最大化(EM)算法获得。用来自一个杂交实验的真实数据对所提出的模型进行说明,该数据显示出明显偏离正态性假设。通过随机模拟评估偏态正态IM的性能。结果表明,与标准IM和非参数IM相比,偏态正态IM在QTL检测方面具有更高的功效,在QTL定位方面具有更高的精度。

相似文献

1
Mapping of quantitative trait loci using the skew-normal distribution.
J Zhejiang Univ Sci B. 2007 Nov;8(11):792-801. doi: 10.1631/jzus.2007.B0792.
2
Mapping QTLs for traits measured as percentages.
Genet Res. 2004 Jun;83(3):159-68. doi: 10.1017/s0016672304006834.
3
Mapping quantitative trait loci in the case of a spike in the phenotype distribution.
Genetics. 2003 Mar;163(3):1169-75. doi: 10.1093/genetics/163.3.1169.
4
Functional mapping of dynamic traits with robust t-distribution.
PLoS One. 2011;6(9):e24902. doi: 10.1371/journal.pone.0024902. Epub 2011 Sep 22.
5
Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual.
Theor Appl Genet. 2009 Feb;118(3):609-17. doi: 10.1007/s00122-008-0924-y. Epub 2008 Nov 20.
6
β-composite Interval Mapping for robust QTL analysis.
PLoS One. 2018 Dec 3;13(12):e0208234. doi: 10.1371/journal.pone.0208234. eCollection 2018.
7
Multiple-trait quantitative trait locus mapping with incomplete phenotypic data.
BMC Genet. 2008 Dec 5;9:82. doi: 10.1186/1471-2156-9-82.
8
Box-Cox transformation for QTL mapping.
Genetica. 2006 Sep-Nov;128(1-3):133-43. doi: 10.1007/s10709-005-5577-z.
9
Generalized linear model for interval mapping of quantitative trait loci.
Theor Appl Genet. 2010 Jun;121(1):47-63. doi: 10.1007/s00122-010-1290-0. Epub 2010 Feb 24.
10
On the generalized poisson regression mixture model for mapping quantitative trait loci with count data.
Genetics. 2006 Dec;174(4):2159-72. doi: 10.1534/genetics.106.061960. Epub 2006 Oct 8.

引用本文的文献

1
Robust regression based genome-wide multi-trait QTL analysis.
Mol Genet Genomics. 2021 Sep;296(5):1103-1119. doi: 10.1007/s00438-021-01801-1. Epub 2021 Jun 25.
2
β-composite Interval Mapping for robust QTL analysis.
PLoS One. 2018 Dec 3;13(12):e0208234. doi: 10.1371/journal.pone.0208234. eCollection 2018.
3
A Bayesian Genomic Regression Model with Skew Normal Random Errors.
G3 (Bethesda). 2018 May 4;8(5):1771-1785. doi: 10.1534/g3.117.300406.
4
Genetic Architecture of Capitate Glandular Trichome Density in Florets of Domesticated Sunflower ( L.).
Front Plant Sci. 2018 Jan 9;8:2227. doi: 10.3389/fpls.2017.02227. eCollection 2017.
5
A robust multiple-locus method for quantitative trait locus analysis of non-normally distributed multiple traits.
Heredity (Edinb). 2015 Dec;115(6):556-64. doi: 10.1038/hdy.2015.61. Epub 2015 Jul 15.
6
Influence of outliers on QTL mapping for complex traits.
J Zhejiang Univ Sci B. 2008 Dec;9(12):931-7. doi: 10.1631/jzus.B0820045.

本文引用的文献

1
MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.
J Immunol. 2006 Oct 1;177(7):4620-6. doi: 10.4049/jimmunol.177.7.4620.
2
Rank-based statistical methodologies for quantitative trait locus mapping.
Genetics. 2003 Nov;165(3):1599-605. doi: 10.1093/genetics/165.3.1599.
3
Mapping quantitative trait loci in the case of a spike in the phenotype distribution.
Genetics. 2003 Mar;163(3):1169-75. doi: 10.1093/genetics/163.3.1169.
4
Multiple interval mapping for quantitative trait loci.
Genetics. 1999 Jul;152(3):1203-16. doi: 10.1093/genetics/152.3.1203.
5
Precision mapping of quantitative trait loci.
Genetics. 1994 Apr;136(4):1457-68. doi: 10.1093/genetics/136.4.1457.
6
Empirical threshold values for quantitative trait mapping.
Genetics. 1994 Nov;138(3):963-71. doi: 10.1093/genetics/138.3.963.
7
A nonparametric approach for mapping quantitative trait loci.
Genetics. 1995 Mar;139(3):1421-8. doi: 10.1093/genetics/139.3.1421.
8
Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.
Genetics. 1989 Jan;121(1):185-99. doi: 10.1093/genetics/121.1.185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验