de Groot Marco J L, Daran-Lapujade Pascale, van Breukelen Bas, Knijnenburg Theo A, de Hulster Erik A F, Reinders Marcel J T, Pronk Jack T, Heck Albert J R, Slijper Monique
Netherlands Proteomics Centre, Utrecht, The Netherlands.
Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands.
Microbiology (Reading). 2007 Nov;153(Pt 11):3864-3878. doi: 10.1099/mic.0.2007/009969-0.
Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.
酿酒酵母在酵母中独具特性,能够在完全无氧的条件下快速生长。因此,酿酒酵母是研究对无氧状态生理适应性的理想真核生物模型。近期的转录组分析已鉴定出数百个受氧气供应转录调控的基因,但这种细胞反应的相关性尚未在蛋白质组的关键控制层面进行系统研究。因此,利用代谢稳定同位素标记技术,在需氧和厌氧葡萄糖限制恒化器培养中研究了酿酒酵母对无氧状态的蛋白质组反应,随后对蛋白质表达进行相对定量。通过独立重复培养和严格的统计筛选,生成了一个包含474种定量蛋白质的可靠数据集,其中249种显示出差异表达水平。虽然其中一些变化与先前的转录组研究一致,但据我们所知,酿酒酵母对氧气供应的许多反应此前未被报道。对相同培养物的转录组和蛋白质组进行比较,有力证明了关键细胞过程存在转录后调控,包括糖酵解、氨酰 - tRNA合成、嘌呤核苷酸合成和氨基酸生物合成。使用恒化器培养提供了良好控制且可重复的培养条件,这对于在不同细胞信息层面生成可靠数据集至关重要。转录组和蛋白质组数据的整合为厌氧生长酵母的生理学带来了新的见解,这些见解仅从mRNA或蛋白质水平的差异分析中并不明显,从而说明了多层次研究在酵母系统生物学中的作用。