Suppr超能文献

通过 SWATH-MS 的差异蛋白质组学分析揭示了在厌氧条件下酵母适应非最佳温度的最主要机制。

Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions.

机构信息

CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.

Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands.

出版信息

Sci Rep. 2020 Dec 18;10(1):22329. doi: 10.1038/s41598-020-77846-w.

Abstract

Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.

摘要

阐明酵母的温度耐受机制对于提高菌株的细胞稳定性至关重要,从而提供更经济和可持续的工艺。我们研究了在恒化器条件下,三种不同的酿酒酵母菌株(工业葡萄酒菌株 ADY5、实验室菌株 CEN.PK113-7D 和工业生物乙醇菌株 Ethanol Red)在亚最佳和最佳温度下的差异响应。我们采用了厌氧条件,模拟了工业过程。通过顺序窗口采集所有理论谱-质谱法(SWATH-MS)对这些菌株在所有条件下的蛋白质组谱进行了分析,可定量分析 997 种蛋白质,这些数据可通过 ProteomeXchange(PXD016567)获得。我们的分析表明,菌株之间的温度响应存在差异;然而,我们也发现了一些共同的响应蛋白,这表明温度响应涉及一般应激和特定机制。总的来说,亚最佳温度条件下的蛋白质组会经历更高程度的重塑。蛋白质组学数据表明,冷响应强烈抑制与翻译相关的蛋白质,同时诱导氨基酸代谢,以及与蛋白质折叠和降解相关的成分,而高温响应主要招募氨基酸代谢。我们的研究提供了一个全面而深入的视角,了解生长温度如何影响酵母蛋白质组,这可以为理解和提高酵母耐热性迈出一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c2/7749138/d39878ce93ea/41598_2020_77846_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验