Suppr超能文献

一种用于从基因表达谱中动态识别通路的智能两阶段进化算法。

An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles.

作者信息

Ho Shinn-Ying, Hsieh Chih-Hung, Yu Fu-Chieh, Huang Hui-Ling

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2007 Oct-Dec;4(4):648-704. doi: 10.1109/tcbb.2007.1051.

Abstract

From gene expression profiles, it is desirable to rebuild cellular dynamic regulation networks to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering and pharmaceutics. S-system model is suitable to characterize biochemical network systems and capable to analyze the regulatory system dynamics. However, inference of an S-system model of N-gene genetic networks has 2N(N+1) parameters in a set of non-linear differential equations to be optimized. This paper proposes an intelligent two-stage evolutionary algorithm (iTEA) to efficiently infer the S-system models of genetic networks from time-series data of gene expression. To cope with curse of dimensionality, the proposed algorithm consists of two stages where each uses a divide-and-conquer strategy. The optimization problem is first decomposed into N subproblems having 2(N+1) parameters each. At the first stage, each subproblem is solved using a novel intelligent genetic algorithm (IGA) with intelligent crossover based on orthogonal experimental design (OED). At the second stage, the obtained N solutions to the N subproblems are combined and refined using an OED-based simulated annealing algorithm for handling noisy gene expression profiles. The effectiveness of iTEA is evaluated using simulated expression patterns with and without noise running on a single-processor PC. It is shown that 1) IGA is efficient enough to solve subproblems; 2) IGA is significantly superior to the existing method SPXGA; and 3) iTEA performs well in inferring S-system models for dynamic pathway identification.

摘要

从基因表达谱重建细胞动态调控网络,有助于在分子生物学、生物化学、生物工程和制药领域发现更精细和重要的功能。S-系统模型适用于描述生化网络系统,并能够分析调控系统动力学。然而,一个具有N个基因的遗传网络的S-系统模型的推断需要在一组非线性微分方程中优化2N(N + 1)个参数。本文提出了一种智能两阶段进化算法(iTEA),用于从基因表达的时间序列数据中高效推断遗传网络的S-系统模型。为了应对维度灾难,该算法由两个阶段组成,每个阶段都采用分而治之的策略。首先将优化问题分解为N个子问题,每个子问题有2(N + 1)个参数。在第一阶段,每个子问题使用一种基于正交实验设计(OED)的具有智能交叉的新型智能遗传算法(IGA)来求解。在第二阶段,将获得的N个子问题的解进行组合,并使用基于OED的模拟退火算法进行优化,以处理有噪声的基因表达谱。在单处理器PC上运行有无噪声的模拟表达模式来评估iTEA的有效性。结果表明:1) IGA能够高效地解决子问题;2) IGA明显优于现有方法SPXGA;3) iTEA在推断用于动态途径识别的S-系统模型方面表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验