Suppr超能文献

利用进化计算理解基因和细胞调控网络的设计和进化。

Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks.

机构信息

Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, NY, USA.

出版信息

Methods. 2013 Jul 15;62(1):39-55. doi: 10.1016/j.ymeth.2013.05.013. Epub 2013 May 30.

Abstract

This paper surveys modeling approaches for studying the evolution of gene regulatory networks (GRNs). Modeling of the design or 'wiring' of GRNs has become increasingly common in developmental and medical biology, as a means of quantifying gene-gene interactions, the response to perturbations, and the overall dynamic motifs of networks. Drawing from developments in GRN 'design' modeling, a number of groups are now using simulations to study how GRNs evolve, both for comparative genomics and to uncover general principles of evolutionary processes. Such work can generally be termed evolution in silico. Complementary to these biologically-focused approaches, a now well-established field of computer science is Evolutionary Computations (ECs), in which highly efficient optimization techniques are inspired from evolutionary principles. In surveying biological simulation approaches, we discuss the considerations that must be taken with respect to: (a) the precision and completeness of the data (e.g. are the simulations for very close matches to anatomical data, or are they for more general exploration of evolutionary principles); (b) the level of detail to model (we proceed from 'coarse-grained' evolution of simple gene-gene interactions to 'fine-grained' evolution at the DNA sequence level); (c) to what degree is it important to include the genome's cellular context; and (d) the efficiency of computation. With respect to the latter, we argue that developments in computer science EC offer the means to perform more complete simulation searches, and will lead to more comprehensive biological predictions.

摘要

本文调查了用于研究基因调控网络 (GRN) 进化的建模方法。随着定量基因-基因相互作用、对扰动的响应以及网络的整体动态模式的手段,GRN 的“设计”建模方法的发展,越来越多的人开始使用模拟来研究 GRN 如何进化,这既是为了比较基因组学,也是为了揭示进化过程的一般原则。此类工作通常可以称为计算机模拟中的进化。与这些以生物学为重点的方法互补的是,计算机科学中一个现已成熟的领域是进化计算 (EC),其中从进化原理中启发了高度有效的优化技术。在调查生物学模拟方法时,我们讨论了必须考虑的因素:(a) 数据的精度和完整性(例如,模拟是否与解剖数据非常匹配,或者它们是否更一般地探索进化原则);(b) 建模的详细程度(我们从简单基因-基因相互作用的“粗粒度”进化到 DNA 序列水平的“细粒度”进化);(c) 包括基因组细胞环境的重要程度;以及 (d) 计算效率。关于后者,我们认为计算机科学 EC 的发展提供了执行更完整模拟搜索的手段,并将导致更全面的生物学预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a736/3743956/2c45a911b01d/nihms487274f1.jpg

相似文献

5
The gap gene network.间隙基因网络。
Cell Mol Life Sci. 2011 Jan;68(2):243-74. doi: 10.1007/s00018-010-0536-y. Epub 2010 Oct 8.
6
Gap Gene Regulatory Dynamics Evolve along a Genotype Network.间隙基因调控动力学沿着基因型网络进化。
Mol Biol Evol. 2016 May;33(5):1293-307. doi: 10.1093/molbev/msw013. Epub 2016 Jan 21.

引用本文的文献

5
Is plasticity caused by single genes?可塑性是由单个基因引起的吗?
Nature. 2018 Mar 28;555(7698):E19-E20. doi: 10.1038/nature25495.

本文引用的文献

1
CHARACTER CHANGE, SPECIATION, AND THE HIGHER TAXA.性状变化、物种形成与高级分类群
Evolution. 1982 May;36(3):427-443. doi: 10.1111/j.1558-5646.1982.tb05065.x.
2
DOES EVOLUTIONARY PLASTICITY EVOLVE?进化可塑性会进化吗?
Evolution. 1996 Jun;50(3):1008-1023. doi: 10.1111/j.1558-5646.1996.tb02342.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验