使用磁珠和金纳米催化剂的超灵敏电化学免疫传感

Ultrasensitive electrochemical immunosensing using magnetic beads and gold nanocatalysts.

作者信息

Selvaraju Thangavelu, Das Jagotamoy, Han Sang Woo, Yang Haesik

机构信息

Department of Chemistry, Pusan National University, Busan, Republic of Korea.

出版信息

Biosens Bioelectron. 2008 Feb 28;23(7):932-8. doi: 10.1016/j.bios.2007.09.010. Epub 2007 Sep 29.

Abstract

In the current study, we developed a nanocatalyst-based electrochemical immunoassay using magnetic beads (MBs) and gold nanocatalysts (AuNs). The MBs conjugated with IgG allow easy separation of target proteins and rapid immunosensing reaction, and the AuNs conjugated with IgG amplifies electroactive species via catalytic reaction of AuNs. An antimouse IgG-MB conjugate and an antimouse IgG-AuN conjugate sandwich a target mouse IgG with low nonspecific binding. Thus formed immunosensing complex is strongly attracted to an indium tin oxide (ITO) electrode modified with partially ferrocenyl-tethered dendrimers (Fc-Ds) by using an external magnet. The AuN of the immunosensing complex produces p-aminophenol from p-nitrophenol by catalytic reduction in the presence of NaBH(4), and the generated p-aminophenol is electrooxidized at the Fc-D-modified ITO electrode. The oxidized product, p-quinone imine, is reduced back to p-aminophenol by NaBH(4) and then re-electrooxidized at the electrode. This redox cycling greatly amplifies the electrochemical signal. Moreover, the Fc-D-modified ITO electrode exhibits a low background current. Accordingly, the high signal-to-background ratio allows an extremely low detection limit of 1 fg/mL (7 aM) in cyclic voltammetric experiments and, importantly, 100 ag/mL (0.7 aM) in differential pulse voltammetric experiments.

摘要

在当前的研究中,我们开发了一种基于纳米催化剂的电化学免疫分析方法,该方法使用磁珠(MBs)和金纳米催化剂(AuNs)。与IgG偶联的磁珠便于靶蛋白的分离和快速免疫传感反应,而与IgG偶联的金纳米催化剂通过金纳米催化剂的催化反应放大电活性物质。抗小鼠IgG-MB偶联物和抗小鼠IgG-AuN偶联物以低非特异性结合夹着靶小鼠IgG。如此形成的免疫传感复合物通过使用外部磁铁被强烈吸引到用部分二茂铁基连接的树枝状聚合物(Fc-Ds)修饰的氧化铟锡(ITO)电极上。免疫传感复合物的金纳米催化剂在NaBH₄存在下通过催化还原从对硝基苯酚产生对氨基苯酚,并且生成的对氨基苯酚在Fc-D修饰的ITO电极上被电氧化。氧化产物对醌亚胺被NaBH₄还原回对氨基苯酚,然后在电极上再次被电氧化。这种氧化还原循环极大地放大了电化学信号。此外,Fc-D修饰的ITO电极表现出低背景电流。因此,高信噪比使得在循环伏安实验中的检测限极低,为1 fg/mL(7 aM),重要的是,在差分脉冲伏安实验中的检测限为100 ag/mL(0.7 aM)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索