Grol Meike J, Majdandzić Jasminka, Stephan Klaas E, Verhagen Lennart, Dijkerman H Chris, Bekkering Harold, Verstraten Frans A J, Toni Ivan
Helmholtz Institute, Experimental Psychology, Universiteit Utrecht, 3508 TC Utrecht, The Netherlands.
J Neurosci. 2007 Oct 31;27(44):11877-87. doi: 10.1523/JNEUROSCI.3923-07.2007.
Grasping an object requires processing visuospatial information about the extrinsic features (spatial location) and intrinsic features (size, shape, orientation) of the object. Accordingly, manual prehension has been subdivided into a reach component, guiding the hand toward the object on the basis of its extrinsic features, and a grasp component, preshaping the fingers around the center of mass of the object on the basis of its intrinsic features. In neural terms, this distinction has been linked to a dedicated dorsomedial "reaching" circuit and a dorsolateral "grasping" circuit that process extrinsic and intrinsic features, linking occipital areas via parietal regions with the dorsal and ventral premotor cortex, respectively. We have tested an alternative possibility, namely that the relative contribution of the two circuits is related to the degree of on-line control required by the prehension movement. We used dynamic causal modeling of functional magnetic resonance imaging time series to assess how parieto-frontal connectivity is modulated by planning and executing prehension movements toward objects of different size and width. This experimental manipulation evoked different movements, with different planning and execution phases for the different objects. Crucially, grasping large objects increased inter-regional couplings within the dorsomedial circuit, whereas grasping small objects increased the effective connectivity of a mainly dorsolateral circuit, with a degree of overlap between these circuits. These results argue against the presence of dedicated cerebral circuits for reaching and grasping, suggesting that the contributions of the dorsolateral and the dorsomedial circuits are a function of the degree of on-line control required by the movement.
抓取物体需要处理有关物体外在特征(空间位置)和内在特征(大小、形状、方向)的视觉空间信息。因此,手动抓握已被细分为一个伸展部分,即根据物体的外在特征将手引导向物体,以及一个抓握部分,即根据物体的内在特征在物体质心周围预先塑造手指形状。从神经学角度来看,这种区分与一个专门的背内侧“伸展”回路和一个背外侧“抓握”回路有关,这两个回路分别处理外在和内在特征,通过顶叶区域将枕叶区域与背侧和腹侧运动前皮层相连。我们测试了另一种可能性,即这两个回路的相对贡献与抓握运动所需的在线控制程度有关。我们使用功能磁共振成像时间序列的动态因果模型来评估顶叶 - 额叶连接性如何通过计划和执行针对不同大小和宽度物体的抓握运动而受到调节。这种实验操作引发了不同的运动模式,针对不同物体具有不同的计划和执行阶段。至关重要的是,抓取大物体增加了背内侧回路内的区域间耦合,而抓取小物体则增加了一个主要为背外侧回路的有效连接性,并且这些回路之间存在一定程度的重叠。这些结果反对存在专门用于伸展和抓握的大脑回路,表明背外侧和背内侧回路的贡献是运动所需在线控制程度的函数。