Suppr超能文献

功能磁共振成像揭示了人类伸手抓握动作中手臂运动和抓握形成的神经基础。

Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans.

机构信息

Department of Psychology, Durham University, Durham DH13LE, United Kingdom.

出版信息

J Neurosci. 2010 Aug 4;30(31):10306-23. doi: 10.1523/JNEUROSCI.2023-10.2010.

Abstract

Picking up a cup requires transporting the arm to the cup (transport component) and preshaping the hand appropriately to grasp the handle (grip component). Here, we used functional magnetic resonance imaging to examine the human neural substrates of the transport component and its relationship with the grip component. Participants were shown three-dimensional objects placed either at a near location, adjacent to the hand, or at a far location, within reach but not adjacent to the hand. Participants performed three tasks at each location as follows: (1) touching the object with the knuckles of the right hand; (2) grasping the object with the right hand; or (3) passively viewing the object. The transport component was manipulated by positioning the object in the far versus the near location. The grip component was manipulated by asking participants to grasp the object versus touching it. For the first time, we have identified the neural substrates of the transport component, which include the superior parieto-occipital cortex and the rostral superior parietal lobule. Consistent with past studies, we found specialization for the grip component in bilateral anterior intraparietal sulcus and left ventral premotor cortex; now, however, we also find activity for the grasp even when no transport is involved. In addition to finding areas specialized for the transport and grip components in parietal cortex, we found an integration of the two components in dorsal premotor cortex and supplementary motor areas, two regions that may be important for the coordination of reach and grasp.

摘要

拿起杯子需要将手臂移动到杯子(运输组件)的位置,并适当调整手的形状以抓住手柄(握持组件)。在这里,我们使用功能磁共振成像来研究人类手臂运输组件的神经基础及其与握持组件的关系。参与者在三个位置分别执行以下三个任务:(1)用右手的指关节触摸物体;(2)用右手抓住物体;或(3)被动观看物体。通过将物体放置在远位置(相对于近位置)来操纵运输组件。通过要求参与者抓握物体与触摸物体来操纵握持组件。我们首次确定了运输组件的神经基础,包括顶枕叶皮质和额上顶叶回。与过去的研究一致,我们发现双侧前顶内沟和左腹侧运动前皮质专门用于握持组件;然而,现在即使没有运输,我们也能发现抓握的活动。除了在顶叶皮质中发现专门用于运输和握持组件的区域外,我们还在背侧运动前皮质和辅助运动区发现了两个组件的整合,这两个区域可能对伸手和抓握的协调很重要。

相似文献

2
Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping.
J Neurophysiol. 2011 Nov;106(5):2248-63. doi: 10.1152/jn.01069.2010. Epub 2011 Jul 27.
4
Probing the reaching-grasping network in humans through multivoxel pattern decoding.
Brain Behav. 2015 Oct 21;5(11):e00412. doi: 10.1002/brb3.412. eCollection 2015 Nov.
5
Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
Cortex. 2018 Jan;98:128-148. doi: 10.1016/j.cortex.2017.05.018. Epub 2017 Jun 6.
6
Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions.
Neuropsychologia. 2013 Feb;51(3):410-7. doi: 10.1016/j.neuropsychologia.2012.11.022. Epub 2012 Dec 1.
7
Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.
Eur J Neurosci. 2004 Nov;20(9):2457-66. doi: 10.1111/j.1460-9568.2004.03697.x.
9
Neural correlates of object size and object location during grasping actions.
Eur J Neurosci. 2015 Feb;41(4):454-65. doi: 10.1111/ejn.12786. Epub 2014 Nov 15.
10
Parieto-frontal connectivity during visually guided grasping.
J Neurosci. 2007 Oct 31;27(44):11877-87. doi: 10.1523/JNEUROSCI.3923-07.2007.

引用本文的文献

1
Interactively Integrating Reach and Grasp Information in Macaque Premotor Cortex.
Neurosci Bull. 2025 Jun 21. doi: 10.1007/s12264-025-01430-3.
3
The neural bases of the reach-grasp movement in humans: Quantitative evidence from brain lesions.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2419801122. doi: 10.1073/pnas.2419801122. Epub 2025 Mar 5.
4
Decoding Parametric Grip-Force Anticipation From fMRI Data.
Hum Brain Mapp. 2025 Feb 15;46(3):e70154. doi: 10.1002/hbm.70154.
5
Involvement of aSPOC in the Online Updating of Reach-to-Grasp to Mechanical Perturbations of Hand Transport.
J Neurosci. 2025 Mar 19;45(12):e0173242025. doi: 10.1523/JNEUROSCI.0173-24.2025.
6
Distributed Cortical Regions for the Recall of People, Places, and Objects.
eNeuro. 2025 Jan 15;12(1). doi: 10.1523/ENEURO.0496-24.2024. Print 2025 Jan.
7
Role of the Medial Posterior Parietal Cortex in Orchestrating Attention and Reaching.
J Neurosci. 2025 Jan 1;45(1):e0659242024. doi: 10.1523/JNEUROSCI.0659-24.2024.
8
Visual sensitivity at the service of action control in posterior parietal cortex.
Front Physiol. 2024 May 22;15:1408010. doi: 10.3389/fphys.2024.1408010. eCollection 2024.
10
rTMS over the human medial parietal cortex impairs online reaching corrections.
Brain Struct Funct. 2024 Mar;229(2):297-310. doi: 10.1007/s00429-023-02735-7. Epub 2023 Dec 23.

本文引用的文献

1
Using confidence intervals in within-subject designs.
Psychon Bull Rev. 1994 Dec;1(4):476-90. doi: 10.3758/BF03210951.
2
3
Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.
Neuroscientist. 2010 Aug;16(4):388-407. doi: 10.1177/1073858410375468.
4
Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex.
J Neurophysiol. 2010 Jun;103(6):3389-97. doi: 10.1152/jn.00215.2010. Epub 2010 Apr 14.
6
Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching?
Neuropsychologia. 2010 Jan;48(1):226-34. doi: 10.1016/j.neuropsychologia.2009.09.008.
7
Diversity of grip in Macaca mulatta.
Exp Brain Res. 2009 Aug;197(3):255-68. doi: 10.1007/s00221-009-1909-z. Epub 2009 Jun 30.
8
Human v6: the medial motion area.
Cereb Cortex. 2010 Feb;20(2):411-24. doi: 10.1093/cercor/bhp112. Epub 2009 Jun 5.
9
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验