Suppr超能文献

与抓握相关的离散顶叶-额叶功能连接

Discrete parieto-frontal functional connectivity related to grasping.

作者信息

Hattori Noriaki, Shibasaki Hiroshi, Wheaton Lewis, Wu Tao, Matsuhashi Masao, Hallett Mark

机构信息

Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

J Neurophysiol. 2009 Mar;101(3):1267-82. doi: 10.1152/jn.90249.2008. Epub 2008 Dec 24.

Abstract

The human inferior parietal lobule (IPL) is known to have neuronal connections with the frontal lobe, and these connections have been shown to be associated with sensorimotor integration to perform various types of movement such as grasping. The function of these anatomical connections has not been fully investigated. We studied the judgment of graspability of objects in an event-related functional MRI study in healthy subjects, and found activation in two different regions within IPL: one in the left dorsal IPL extending to the intraparietal sulcus and the other in the left ventral IPL. The former region was activated only in the judgment of graspable objects, whereas the latter was activated in the judgment of both graspable and nongraspable objects although the activation was greater for the graspable objects. Psychophysiological interaction analysis showed that these regions had similar but discrete functional connectivity to the lateral and medial frontal cortices. In relation to this particular task, the left dorsal IPL had functional connectivity to the left ventral premotor cortex, supplementary motor area (SMA) and right cerebellar cortex, whereas the left ventral IPL had functional connectivity to the left dorsolateral prefrontal cortex and pre-SMA. These findings suggest that the connection from the left dorsal IPL is associated specifically with automatic flow of information about grasping behavior. By contrast, the connection from the left ventral IPL might be related to motor imagination or enhanced external attention to the presented stimuli.

摘要

已知人类顶下小叶(IPL)与额叶存在神经元连接,且这些连接已被证明与感觉运动整合相关,以执行诸如抓握等各种类型的运动。这些解剖学连接的功能尚未得到充分研究。我们在一项针对健康受试者的事件相关功能磁共振成像研究中,对物体可抓握性的判断进行了研究,发现在IPL内的两个不同区域有激活:一个在左侧背侧IPL延伸至顶内沟,另一个在左侧腹侧IPL。前一个区域仅在对可抓握物体的判断中被激活,而后者在对可抓握和不可抓握物体的判断中均被激活,尽管对可抓握物体的激活更强。心理生理交互分析表明,这些区域与外侧和内侧额叶皮质具有相似但离散的功能连接。就这一特定任务而言,左侧背侧IPL与左侧腹侧运动前皮质、辅助运动区(SMA)和右侧小脑皮质具有功能连接,而左侧腹侧IPL与左侧背外侧前额叶皮质和前SMA具有功能连接。这些发现表明,来自左侧背侧IPL的连接与抓握行为的信息自动流动特别相关。相比之下,来自左侧腹侧IPL的连接可能与运动想象或对呈现刺激的增强外部注意力有关。

相似文献

1
Discrete parieto-frontal functional connectivity related to grasping.
J Neurophysiol. 2009 Mar;101(3):1267-82. doi: 10.1152/jn.90249.2008. Epub 2008 Dec 24.
2
Parieto-frontal connectivity during visually guided grasping.
J Neurosci. 2007 Oct 31;27(44):11877-87. doi: 10.1523/JNEUROSCI.3923-07.2007.
4
Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment.
Brain. 2006 May;129(Pt 5):1113-24. doi: 10.1093/brain/awl051. Epub 2006 Mar 6.
5
Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
Cereb Cortex. 2018 Apr 1;28(4):1245-1259. doi: 10.1093/cercor/bhx037.
6
Functional anatomy of the macaque temporo-parieto-frontal connectivity.
Cortex. 2017 Dec;97:306-326. doi: 10.1016/j.cortex.2016.12.007. Epub 2016 Dec 18.
7
The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study.
J Neurophysiol. 2008 Nov;100(5):2627-39. doi: 10.1152/jn.01376.2007. Epub 2008 Sep 3.
9
Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks.
Hum Brain Mapp. 2013 Jul;34(7):1542-58. doi: 10.1002/hbm.22009. Epub 2012 Feb 22.

引用本文的文献

2
Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements.
Neuron. 2022 Jan 5;110(1):154-174.e12. doi: 10.1016/j.neuron.2021.10.002. Epub 2021 Oct 21.
3
Aging Changes Effective Connectivity of Motor Networks During Motor Execution and Motor Imagery.
Front Aging Neurosci. 2019 Nov 21;11:312. doi: 10.3389/fnagi.2019.00312. eCollection 2019.
5
Neurophysiology of Grasping Actions: Evidence from ERPs.
Front Psychol. 2016 Dec 22;7:1996. doi: 10.3389/fpsyg.2016.01996. eCollection 2016.
6
The role of left supplementary motor area in grip force scaling.
PLoS One. 2013 Dec 31;8(12):e83812. doi: 10.1371/journal.pone.0083812. eCollection 2013.
7
The motor system resonates to the distal goal of observed actions: testing the inverse pliers paradigm in an ecological setting.
Exp Brain Res. 2013 Nov;231(1):37-49. doi: 10.1007/s00221-013-3664-4. Epub 2013 Aug 15.
8
Neural networks for action representation: a functional magnetic-resonance imaging and dynamic causal modeling study.
Front Hum Neurosci. 2012 Aug 14;6:236. doi: 10.3389/fnhum.2012.00236. eCollection 2012.
9
Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.
PLoS One. 2012;7(5):e36052. doi: 10.1371/journal.pone.0036052. Epub 2012 May 18.
10
Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks.
Hum Brain Mapp. 2013 Jul;34(7):1542-58. doi: 10.1002/hbm.22009. Epub 2012 Feb 22.

本文引用的文献

1
Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex.
J Cogn Neurosci. 1997 Fall;9(5):648-63. doi: 10.1162/jocn.1997.9.5.648.
3
Ideomotor apraxia: a review.
J Neurol Sci. 2007 Sep 15;260(1-2):1-10. doi: 10.1016/j.jns.2007.04.014. Epub 2007 May 16.
4
Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?
Neuroimage. 2007;36 Suppl 2:T94-T108. doi: 10.1016/j.neuroimage.2007.03.031. Epub 2007 Mar 31.
5
Beyond grasping: representation of action in human anterior intraparietal sulcus.
Neuroimage. 2007;36 Suppl 2(Suppl 2):T77-86. doi: 10.1016/j.neuroimage.2007.03.026. Epub 2007 Mar 28.
6
Fundamental components of attention.
Annu Rev Neurosci. 2007;30:57-78. doi: 10.1146/annurev.neuro.30.051606.094256.
7
The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability.
Neuroimage. 2006 Nov 1;33(2):430-48. doi: 10.1016/j.neuroimage.2006.06.054. Epub 2006 Sep 1.
8
The role of parietal cortex in visuomotor control: what have we learned from neuroimaging?
Neuropsychologia. 2006;44(13):2668-84. doi: 10.1016/j.neuropsychologia.2005.11.003. Epub 2005 Dec 9.
9
Cortical connections of the inferior parietal cortical convexity of the macaque monkey.
Cereb Cortex. 2006 Oct;16(10):1389-417. doi: 10.1093/cercor/bhj076. Epub 2005 Nov 23.
10
The functional organization of the intraparietal sulcus in humans and monkeys.
J Anat. 2005 Jul;207(1):3-17. doi: 10.1111/j.1469-7580.2005.00426.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验