Suppr超能文献

蜥蜴基底乳头中毛细胞的结构和功能分化表明了羊膜动物耳蜗的运作原理。

The structural and functional differentiation of hair cells in a lizard's basilar papilla suggests an operational principle of amniote cochleas.

作者信息

Chiappe M Eugenia, Kozlov Andrei S, Hudspeth A J

机构信息

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065-6399, USA.

出版信息

J Neurosci. 2007 Oct 31;27(44):11978-85. doi: 10.1523/JNEUROSCI.3679-07.2007.

Abstract

The hair cells in the mammalian cochlea are of two distinct types. Inner hair cells are responsible for transducing mechanical stimuli into electrical responses, which they forward to the brain through a copious afferent innervation. Outer hair cells, which are thought to mediate the active process that sensitizes and tunes the cochlea, possess a negligible afferent innervation. For every inner hair cell, there are approximately three outer hair cells, so only one-quarter of the hair cells directly deliver information to the CNS. Although this is a surprising feature for a sensory system, the occurrence of a similar innervation pattern in birds and crocodilians suggests that the arrangement has an adaptive value. Using a lizard with highly developed hearing, the tokay gecko, we demonstrate in the present study that the same principle operates in a third major group of terrestrial animals. We propose that the differentiation of hair cells into signaling and amplifying classes reflects incompatible strategies for the optimization of mechanoelectrical transduction and of an active process based on active hair-bundle motility.

摘要

哺乳动物耳蜗中的毛细胞有两种不同类型。内毛细胞负责将机械刺激转化为电反应,并通过丰富的传入神经支配将其传递给大脑。外毛细胞被认为介导了使耳蜗敏感化和调谐的主动过程,但其传入神经支配可忽略不计。每一个内毛细胞大约对应三个外毛细胞,因此只有四分之一的毛细胞直接向中枢神经系统传递信息。尽管这对于一个感觉系统来说是一个令人惊讶的特征,但鸟类和鳄鱼中类似的神经支配模式的出现表明这种排列具有适应性价值。在本研究中,我们利用听力高度发达的蜥蜴——大壁虎,证明了这一相同原理在第三大类陆生动物中也适用。我们提出毛细胞分化为信号传导类和放大类反映了在优化机械电转导和基于活跃毛束运动的主动过程方面不相容的策略。

相似文献

3
Persistence of Ca(v)1.3 Ca2+ channels in mature outer hair cells supports outer hair cell afferent signaling.
J Neurosci. 2007 Jun 13;27(24):6442-51. doi: 10.1523/JNEUROSCI.5364-06.2007.
4
Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells.
J Physiol. 2003 Jun 15;549(Pt 3):697-717. doi: 10.1113/jphysiol.2002.037481. Epub 2003 May 9.
5
Localization and developmental expression of BK channels in mammalian cochlear hair cells.
Neuroscience. 2005;130(2):475-84. doi: 10.1016/j.neuroscience.2004.09.038.
6
8
The cellular basis of hearing: the biophysics of hair cells.
Science. 1985 Nov 15;230(4727):745-52. doi: 10.1126/science.2414845.
9
The electrical properties of auditory hair cells in the frog amphibian papilla.
J Neurosci. 1999 Jul 1;19(13):5275-92. doi: 10.1523/JNEUROSCI.19-13-05275.1999.

引用本文的文献

1
The mechanisms of frequency tuning in gecko auditory hair cells.
Hear Res. 2025 Mar;457:109186. doi: 10.1016/j.heares.2025.109186. Epub 2025 Jan 11.
2
Atypical tuning and amplification mechanisms in gecko auditory hair cells.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2122501119. doi: 10.1073/pnas.2122501119. Epub 2022 Mar 15.
3
Fast adaptation of cooperative channels engenders Hopf bifurcations in auditory hair cells.
Biophys J. 2022 Mar 15;121(6):897-909. doi: 10.1016/j.bpj.2022.02.016. Epub 2022 Feb 15.
4
Strongly directional responses to tones and conspecific calls in the auditory nerve of the Tokay gecko, .
J Neurophysiol. 2021 Mar 1;125(3):887-902. doi: 10.1152/jn.00576.2020. Epub 2021 Feb 3.
5
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea.
Trends Neurosci. 2020 Feb;43(2):88-102. doi: 10.1016/j.tins.2019.12.003. Epub 2020 Jan 15.
6
Mammalian cochlea as a physics guided evolution-optimized hearing sensor.
Sci Rep. 2015 Jul 28;5:12492. doi: 10.1038/srep12492.
7
Sensational placodes: neurogenesis in the otic and olfactory systems.
Dev Biol. 2014 May 1;389(1):50-67. doi: 10.1016/j.ydbio.2014.01.023. Epub 2014 Feb 6.
8
Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards.
J Assoc Res Otolaryngol. 2011 Apr;12(2):203-17. doi: 10.1007/s10162-010-0253-0. Epub 2010 Dec 7.
9
Efferent control of the electrical and mechanical properties of hair cells in the bullfrog's sacculus.
PLoS One. 2010 Oct 29;5(10):e13777. doi: 10.1371/journal.pone.0013777.
10
Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
Biophys J. 2010 Aug 9;99(4):1064-72. doi: 10.1016/j.bpj.2010.06.012.

本文引用的文献

1
Persistence of Ca(v)1.3 Ca2+ channels in mature outer hair cells supports outer hair cell afferent signaling.
J Neurosci. 2007 Jun 13;27(24):6442-51. doi: 10.1523/JNEUROSCI.5364-06.2007.
3
Prestin and the cochlear amplifier.
J Physiol. 2006 Oct 1;576(Pt 1):37-42. doi: 10.1113/jphysiol.2006.114652. Epub 2006 Jul 27.
4
Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility.
Mol Phylogenet Evol. 2006 Dec;41(3):622-35. doi: 10.1016/j.ympev.2006.05.042. Epub 2006 Jun 6.
5
Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.
J Neurosci. 2006 Mar 8;26(10):2757-66. doi: 10.1523/JNEUROSCI.3808-05.2006.
6
The sensory and motor roles of auditory hair cells.
Nat Rev Neurosci. 2006 Jan;7(1):19-29. doi: 10.1038/nrn1828.
7
Two modes of motion of the alligator lizard cochlea: measurements and model predictions.
J Acoust Soc Am. 2005 Sep;118(3 Pt 1):1585-92. doi: 10.1121/1.1993147.
8
Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro.
Biophys J. 2005 Dec;89(6):4382-95. doi: 10.1529/biophysj.105.070474. Epub 2005 Sep 16.
9
Force generation by mammalian hair bundles supports a role in cochlear amplification.
Nature. 2005 Feb 24;433(7028):880-3. doi: 10.1038/nature03367. Epub 2005 Feb 6.
10
Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro.
Nat Neurosci. 2005 Feb;8(2):149-55. doi: 10.1038/nn1385. Epub 2005 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验