Suppr超能文献

基于对象的分类作为传统基于像素分类的替代方法,用于识别草雀的潜在栖息地。

Object-based classification as an alternative approach to the traditional pixel-based classification to identify potential habitat of the grasshopper sparrow.

作者信息

Jobin Benoît, Labrecque Sandra, Grenier Marcelle, Falardeau Gilles

机构信息

Canadian Wildlife Service, Environment Canada, 1141 route de l'Eglise, C.P. 10100, Sainte-Foy, G1V 4H5, Québec, Canada.

出版信息

Environ Manage. 2008 Jan;41(1):20-31. doi: 10.1007/s00267-007-9031-0.

Abstract

The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

摘要

在大区域内识别野生动物栖息地分布的传统方法是基于像素对卫星图像进行分类,将其划分为一系列栖息地类别,用于选择合适的栖息地斑块。基于对象的分类是一种新方法,它可以基于图像光谱波段的分割来实现相同的目标,从而创建在空间或光谱特征方面具有同质性的多边形。分割算法不仅依赖于单个像素值,还依赖于形状、纹理和像素空间连续性。基于对象的分类是一个基于知识库的过程,其中使用地面控制点开发一个解释键,并根据确定的光谱和/或空间属性的阈值将对象分配到特定类别。我们使用eCognition软件开发了一个模型,以识别草地鹨(一种在魁北克西南部发现的珍稀且数量不断减少的物种)的合适栖息地。该模型是在一个已知繁殖地点的区域开发的,并应用于覆盖相邻区域的其他图像,这些区域可能存在潜在的繁殖栖息地。我们成功地在以奶牛养殖为主的地区找到了潜在栖息地,但在一个相邻区域却失败了,该区域由一幅独特的陆地卫星图像覆盖,且以一年生作物为主。我们讨论了这种方法的附加值,例如使用与对象相关的上下文信息的可能性,以及在分割和土地覆盖分类过程中消除不合适区域的能力,还有技术和后勤方面的限制。还提供了一系列关于使用这种方法以及草地鹨栖息地保护问题的建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验