Suppr超能文献

利用原始的、未分类的卫星图像对鸟类生物多样性进行建模。

Modelling avian biodiversity using raw, unclassified satellite imagery.

作者信息

St-Louis Véronique, Pidgeon Anna M, Kuemmerle Tobias, Sonnenschein Ruth, Radeloff Volker C, Clayton Murray K, Locke Brian A, Bash Dallas, Hostert Patrick

机构信息

Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130197. doi: 10.1098/rstb.2013.0197. Print 2014.

Abstract

Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.

摘要

遥感技术在生物多样性保护中的应用通常依赖于图像分类,而这种分类无法捕捉粗略土地覆盖类别中的变异性。在此,我们比较了从未分类遥感数据得出的两种指标,即栖息地异质性指标和栖息地组成指标,以解释新墨西哥州半干旱景观中鸟类物种丰富度以及10个物种的空间分布情况。我们于1996年至1998年在布利斯堡陆军储备基地麦格雷戈山脉的42个样地对鸟类数量进行了调查。1997年5月两幅陆地卫星影像的归一化植被指数值是像素间栖息地异质性(图像纹理)的基础,我们利用原始影像将每个像素分解为不同的栖息地成分(光谱混合分析)。我们使用模型平均法将鸟类生物多样性指标与图像纹理指标及光谱混合分析分数联系起来。与栖息地组成指标相比,栖息地异质性指标,尤其是角二阶矩和标准差,对鸟类物种丰富度及大多数物种的数量具有更高的解释力。单独使用图像纹理,或与其他基于分类影像的方法结合使用,来监测生物多样性的状况和趋势,能够极大地改善保护工作和栖息地管理。

相似文献

1
Modelling avian biodiversity using raw, unclassified satellite imagery.利用原始的、未分类的卫星图像对鸟类生物多样性进行建模。
Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130197. doi: 10.1098/rstb.2013.0197. Print 2014.
3
Image texture predicts avian density and species richness.图像纹理可预测鸟类密度和物种丰富度。
PLoS One. 2013 May 10;8(5):e63211. doi: 10.1371/journal.pone.0063211. Print 2013.
5
Passive monitoring of avian habitat on working lands.工作用地上的鸟类栖息地被动监测。
Ecol Appl. 2023 Jul;33(5):e2860. doi: 10.1002/eap.2860. Epub 2023 May 22.

引用本文的文献

3
Using satellite data to assess spatial drivers of bird diversity.利用卫星数据评估鸟类多样性的空间驱动因素。
Remote Sens Ecol Conserv. 2023 Aug;9(4):483-500. doi: 10.1002/rse2.322. Epub 2022 Dec 24.
7
Migratory herbivorous waterfowl track satellite-derived green wave index.迁徙性食草水鸟追踪卫星衍生的绿波指数。
PLoS One. 2014 Sep 23;9(9):e108331. doi: 10.1371/journal.pone.0108331. eCollection 2014.
8
Satellite remote sensing, biodiversity research and conservation of the future.卫星遥感、生物多样性研究与未来保护
Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130190. doi: 10.1098/rstb.2013.0190. Print 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验