Suppr超能文献

SVD-based modeling for image texture classification using wavelet transformation.

作者信息

Selvan Srinivasan, Ramakrishnan Srinivasan

机构信息

PSG College of Technology, Coimbatore 641 004, India.

出版信息

IEEE Trans Image Process. 2007 Nov;16(11):2688-96. doi: 10.1109/tip.2007.908082.

Abstract

This paper introduces a new model for image texture classification based on wavelet transformation and singular value decomposition. The probability density function of the singular values of wavelet transformation coefficients of image textures is modeled as an exponential function. The model parameter of the exponential function is estimated using maximum likelihood estimation technique. Truncation of lower singular values is employed to classify textures in the presence of noise. Kullback-Leibler distance (KLD) between estimated model parameters of image textures is used as a similarity metric to perform the classification using minimum distance classifier. The exponential function permits us to have closed-form expressions for the estimate of the model parameter and computation of the KLD. These closed-form expressions reduce the computational complexity of the proposed approach. Experimental results are presented to demonstrate the effectiveness of this approach on the entire 111 textures from Brodatz database. The experimental results demonstrate that the proposed approach improves recognition rates using a lower number of parameters on large databases. The proposed approach achieves higher recognition rates compared to the traditional sub-band energy-based approach, the hybrid IMM/SVM approach, and the GGD-based approach.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验