Suppr超能文献

生物质中的金属:从元素生物系统到分馏原因及元素利用

Metals in biomass: from the biological system of elements to reasons of fractionation and element use.

作者信息

Fränzle Stefan, Markert Bernd

机构信息

Lehrstuhl für Umweltverfahrenstechnik, Internationales Hochschulinstitut Zittau, Markt 23, 02763 Zittau, Germany.

出版信息

Environ Sci Pollut Res Int. 2007 Sep;14(6):404-13. doi: 10.1065/espr2006.12.372.

Abstract

BACKGROUND, AIM AND SCOPE: Metal ions generally share the ability/ tendency of interacting with biological material by forming complexes, except possibly for the heavy alkali metals K, Rb and Cs. This is unrelated to the metals being either essential for sustaining life and its reproduction, apparently insignificant for biology, although perhaps undergoing bioconcentration or even being outright toxic, even at low admission levels. Yet, those different kinds of metal-biomass interactions should in some way depend on properties describing coordination chemistries of these very metals. Nevertheless, both ubiquitously essential metals and others sometimes used in biology should share these properties in numeric terms, since it can be anticipated that they will be distinguished from non-essential and/or toxic ones. These features noted above include bioconcentration, the involvement of metal ions such as Zn, Mg, Cu, Fe, etc. in biocatalysis as crucial components of metalloenzymes and the introduction of a certain set of essential metals common to (almost) all living beings (K, Mg, Mo, Mn, Fe, Cu and Zn), which occurred probably very early in biological evolution by 'natural selection of the chemical elements' (more exactly speaking, of the metallomes).

MATERIALS AND METHODS

The approach is semiempirical and consists of three consecutive steps: 1) derivation of a regression equation which links complex stability data of different complexes containing the same metal ion to electrochemical data pertinent to the (replaced) ligands, thus describing properties of metal ions in complexes, 2) a graphical representation of the properties--two typical numbers c and x for each metal ion--in some map across the c/x-space, which additionally contains information about biological functions of these metal ions, i.e. whether they are essential in general (e.g. Mg, Mn, Zn) or, for a few organisms of various kinds (e.g. Cd, V), not essential (e.g. rare earth element ions) or even generally highly toxic (Hg, U). It is hypothesized that, if coordination properties of metals control their biological 'feasibility' in some way, this should show up in the mappings (one each for mono and bidentate-bonding ligands). 3) eventually, the regression equation produced in step 1) is inverted to calculate complex stabilities pertinent to biological systems: 3a) complex stabilities are mapped for ligands delivered to soil (-water) by green plants (e.g. citrate, malate) and fungi and, compared to their unlike selectivities and demands of metal use (photosynthesis taking place or not), 3b) the evolution of the metallome during late chemical evolution is reconstructed.

RESULTS

These maps show some 'window of essentiality', a small, contrived range/area of c and x parameters in which essential metal ions gather almost exclusively. c and x thus control the possibility of a metal ion becoming essential by their influencing details of metal-substrate or (in cases of catalytic activities) metal-product interactions. Exceptions are not known to be involved in biocatalysis anyhow.

DISCUSSION

Effects of ligands secreted, e.g. from tree roots or agaric mycelia to the soil on the respective modes (selectivities) of metal bioconcentration can be calculated by the equation giving complex stability constants, with obvious ramifications for a thorough, systematic interpretation of biomonitoring data. Eventually, alterations of C, N and P-compounds during chemical evolution are investigated--which converted CH4 or CO2, N2 and other non-ligands to amino acids, etc., for example, with the latter behaving as efficient chelating ligands: Did they cause metal ions to accumulate in what was going to become biological matter and was there a selectivity, a positive bias in favour of now-essential metals (see above) in this process? Though there was no complete selectivity of this kind, neither a RNA world in which early ribozymes effected most of biocatalysis, nor a paleoatmosphere containing substantial amounts of CO could have paved the way to the present biochemistry and metallomes.

CONCLUSIONS

This way of reasoning provides a causal account for abundance distributions described earlier in the Biological System of Elements (BSE; Markert 1994, Fränzle & Markert 2000, 2002). There is a pronounced change from chemical evolution, where but few transformations depended on metal ion catalysis to biology.

RECOMMENDATIONS AND PERSPECTIVES

The application of this numerical approach can be used for modified, weighted evaluation of biomonitoring analytical data, likewise for the prediction of bioconcentration hazards due to a manifold of metal ions, including organometallic ones. This is relevant in ecotoxicology and biomonitoring. In combining apoproteins or peptides synthesized from scratch for purposes of catalysing certain transformations, the map and numerical approaches might prove useful for the selection of central ions which are even more efficient than the 'natural' ones, like for Co2+ in many Zn enzymes.

摘要

背景、目的和范围:金属离子通常具有通过形成络合物与生物材料相互作用的能力/倾向,重碱金属钾、铷和铯可能除外。这与金属是否对维持生命及其繁殖至关重要无关,这些金属对生物学而言显然微不足道,尽管它们可能会发生生物富集,甚至即使在低摄入水平下也具有剧毒。然而,这些不同类型的金属 - 生物量相互作用在某种程度上应该取决于描述这些金属配位化学的性质。尽管如此,普遍存在的必需金属和其他有时用于生物学的金属在数值方面应该具有这些性质,因为可以预期它们将与非必需和/或有毒金属区分开来。上述这些特征包括生物富集、锌、镁、铜、铁等金属离子作为金属酶的关键成分参与生物催化,以及引入了一组(几乎)所有生物共有的必需金属(钾、镁、钼、锰、铁、铜和锌),这些金属可能在生物进化早期通过“化学元素的自然选择”(更准确地说是金属组的选择)出现。

材料与方法

该方法是半经验性的,由三个连续步骤组成:1)推导回归方程,该方程将含有相同金属离子的不同络合物的络合稳定性数据与与(被取代的)配体相关的电化学数据联系起来,从而描述络合物中金属离子的性质;2)在c/x空间的某个图谱中以图形表示这些性质——每个金属离子的两个典型数字c和x,该图谱还包含有关这些金属离子生物学功能的信息,即它们总体上是否必需(例如镁、锰、锌),或者对于几种不同类型的生物体(例如镉、钒)而言是否非必需(例如稀土元素离子)甚至通常具有剧毒(汞、铀)。据推测,如果金属的配位性质以某种方式控制其生物学“可行性”,这应该会在图谱中体现出来(单齿和双齿键合配体各有一个图谱)。3)最终,将步骤1)中产生的回归方程进行转换,以计算与生物系统相关的络合稳定性:3a)绘制绿色植物(例如柠檬酸、苹果酸)和真菌输送到土壤( - 水)中的配体的络合稳定性,并与其不同的选择性和金属使用需求(是否进行光合作用)进行比较;3b)重建化学进化后期金属组的演变。

结果

这些图谱显示出一些“必需性窗口”,即c和x参数的一个小的、人为设定的范围/区域,必需金属离子几乎完全聚集在其中。因此,c和x通过影响金属 - 底物相互作用的细节或(在催化活性情况下)金属 - 产物相互作用的细节来控制金属离子成为必需元素的可能性。无论如何,已知例外情况不参与生物催化。

讨论

例如从树根或木耳菌丝体分泌到土壤中的配体对金属生物富集各自模式(选择性)的影响,可以通过给出络合稳定常数的方程来计算,这对全面、系统地解释生物监测数据具有明显的影响。最终,研究化学进化过程中碳、氮和磷化合物的变化——例如,这些变化将甲烷或二氧化碳、氮气和其他非配体转化为氨基酸等,后者表现为有效的螯合配体:它们是否导致金属离子在即将成为生物物质的物质中积累,并且在这个过程中是否存在选择性,即对现在的必需金属(见上文)的正偏差?尽管不存在这种完全的选择性,但无论是早期核酶进行大部分生物催化的RNA世界,还是含有大量一氧化碳的古大气,都不可能为当前的生物化学和金属组铺平道路。

结论

这种推理方式为早期在《元素生物系统》(BSE;Markert 1994,Fränzle & Markert 2000,2002)中描述的丰度分布提供了因果解释。从化学进化到生物学有一个明显的变化,在化学进化中只有少数转化依赖于金属离子催化。

建议与展望

这种数值方法的应用可用于对生物监测分析数据进行改进的加权评估,同样可用于预测多种金属离子(包括有机金属离子)导致的生物富集危害。这在生态毒理学和生物监测中具有相关性。在为催化某些转化而从头合成载脂蛋白或肽时,该图谱和数值方法可能有助于选择比“天然”离子更有效的中心离子,例如许多锌酶中的钴离子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验