Schröder Peter, Herzig Rolf, Bojinov Bojin, Ruttens Ann, Nehnevajova Erika, Stamatiadis Stamatis, Memon Abdul, Vassilev Andon, Caviezel Mario, Vangronsveld Jaco
Helmholtz-Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
Environ Sci Pollut Res Int. 2008 May;15(3):196-204. doi: 10.1065/espr2008.03.481.
Following to the 2006 climate summit, the European Union formally set the goal of limiting global warming to 2 degrees Celsius. But even today, climate change is already affecting people and ecosystems. Examples are melting glaciers and polar ice, reports about thawing permafrost areas, dying coral reefs, rising sea levels, changing ecosystems and fatal heat periods. Within the last 150 years, CO2 levels rose from 280 ppm to currently over 400 ppm. If we continue on our present course, CO2 equivalent levels could approach 600 ppm by 2035. However, if CO2 levels are not stabilized at the 450-550 ppm level, the consequences could be quite severe. Hence, if we do not act now, the opportunity to stabilise at even 550 ppm is likely to slip away. Long-term stabilisation will require that CO2 emissions ultimately be reduced to more than 80% below current levels. This will require major changes in how we operate.
Reducing greenhouse gases from burning fossil fuels seems to be the most promising approach to counterbalance the dramatic climate changes we would face in the near future. It is clear since the Kyoto protocol that the availability of fossil carbon resources will not match our future requirements. Furthermore, the distribution of fossil carbon sources around the globe makes them an even less reliable source in the future. We propose to screen crop and non-crop species for high biomass production and good survival on marginal soils as well as to produce mutants from the same species by chemical mutagenesis or related methods. These plants, when grown in adequate crop rotation, will provide local farming communities with biomass for the fermentation in decentralized biogas reactors, and the resulting nitrogen rich manure can be distributed on the fields to improve the soil.
Such an approach will open new economic perspectives to small farmers, and provide a clever way to self sufficient and sustainable rural development. Together with the present economic reality, where energy and raw material prices have drastically increased over the last decade, they necessitate the development and the establishment of alternative concepts.
Biotechnology is available to apply fast breeding to promising energy plant species. It is important that our valuable arable land is preserved for agriculture. The opportunity to switch from low-income agriculture to biogas production may convince small farmers to adhere to their business and by that preserve the identity of rural communities.
Overall, biogas is a promising alternative for the future, because its resource base is widely available, and single farms or small local cooperatives might start biogas plant operation.
继2006年气候峰会之后,欧盟正式设定了将全球变暖限制在2摄氏度以内的目标。但即便在今天,气候变化已然在影响人类和生态系统。比如冰川和极地冰盖融化、有关永久冻土区解冻的报道、珊瑚礁死亡、海平面上升、生态系统变化以及致命的高温期。在过去的150年里,二氧化碳水平从280 ppm升至目前的400 ppm以上。如果我们继续沿着当前的道路走下去,到2035年二氧化碳当量水平可能会接近600 ppm。然而,如果二氧化碳水平不能稳定在450 - 550 ppm的水平,后果可能会相当严重。因此,如果我们现在不采取行动,即使稳定在550 ppm的机会也可能溜走。长期稳定将要求二氧化碳排放量最终比当前水平降低80%以上。这将需要我们运营方式的重大改变。
减少燃烧化石燃料产生的温室气体似乎是应对我们在不久的将来可能面临的剧烈气候变化最有前景的方法。自《京都议定书》以来就很清楚,化石碳资源的可获取性将无法满足我们未来的需求。此外,全球化石碳源的分布使得它们在未来成为更不可靠的能源。我们提议筛选出能在边际土壤上实现高生物量生产且存活良好的作物和非作物物种,并通过化学诱变或相关方法培育同一物种的突变体。这些植物在进行适当的轮作种植时,将为当地农业社区提供生物质用于分散式沼气反应器的发酵,产生的富氮肥料可施用于田间以改善土壤。
这样一种方法将为小农户开启新的经济前景,并为自给自足和可持续的农村发展提供一条明智的途径。再结合当前的经济现实,在过去十年里能源和原材料价格大幅上涨,这就需要发展并建立替代概念。
生物技术可用于对有前景的能源植物物种进行快速育种。保护我们宝贵的耕地用于农业生产很重要。从小农农业转向沼气生产的机会可能会说服小农户坚守他们的事业,从而维护农村社区的特色。
总体而言,沼气是未来一种很有前景的替代能源,因为其资源基础广泛可得,单个农场或小型地方合作社都可以启动沼气厂运营。