Suppr超能文献

心脏电活动传播与心律失常光学标测中的光子散射效应

Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart.

作者信息

Bishop Martin J, Gavaghan David J, Trayanova Natalia A, Rodriguez Blanca

机构信息

Computational Biology Group, University of Oxford Computing Laboratory, Oxford, UK.

出版信息

J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S75-80. doi: 10.1016/j.jelectrocard.2007.06.020.

Abstract

BACKGROUND

Optical mapping is a widely used experimental tool providing high-resolution recordings of cardiac electrical activity. However, the technique is limited by signal distortion due to photon scattering in the tissue. Computational models of the fluorescence recording are capable of assessing these distortion effects, providing important insight to assist experimental data interpretation.

METHODS

We present results from a new panoramic optical mapping model, which is used to assess distortion in ventricular optical mapping signals during pacing and arrhythmogenesis arising from 3-dimensional photon scattering.

RESULTS/CONCLUSIONS: We demonstrate that accurate consideration of wavefront propagation within the complex ventricular structure, along with accurate representation of photon scattering in 3 dimensions, is essential to faithfully assess distortion effects arising during optical mapping. In this article, examined effects include (1) the specific morphology of the optical action potential upstroke during pacing and (2) the shift in the location of epicardial phase singularities obtained from fluorescent maps.

摘要

背景

光学映射是一种广泛使用的实验工具,可提供心脏电活动的高分辨率记录。然而,该技术受到组织中光子散射导致的信号失真的限制。荧光记录的计算模型能够评估这些失真效应,为辅助实验数据解释提供重要见解。

方法

我们展示了一种新的全景光学映射模型的结果,该模型用于评估起搏和心律失常发生过程中由于三维光子散射引起的心室光学映射信号的失真。

结果/结论:我们证明,在复杂的心室结构中准确考虑波前传播,以及在三维中准确表示光子散射,对于如实地评估光学映射过程中产生的失真效应至关重要。在本文中,研究的效应包括:(1)起搏期间光学动作电位上升支的特定形态,以及(2)从荧光图获得的心外膜相位奇点位置的偏移。

相似文献

1
Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S75-80. doi: 10.1016/j.jelectrocard.2007.06.020.
2
Three-dimensional panoramic imaging of cardiac arrhythmias in rabbit heart.
J Biomed Opt. 2007 Jul-Aug;12(4):044019. doi: 10.1117/1.2753748.
3
Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1556-9. doi: 10.1109/IEMBS.2006.259243.
5
What can we learn from the optically recorded epicardial action potential?
Biophys J. 2006 Nov 15;91(10):3959-60. doi: 10.1529/biophysj.106.091835. Epub 2006 Aug 25.
6
Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.
Biophys J. 2006 Apr 15;90(8):2938-45. doi: 10.1529/biophysj.105.076505. Epub 2006 Jan 27.
7
The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.
Biophys J. 2007 Nov 15;93(10):3714-26. doi: 10.1529/biophysj.107.110981.
8
Inference of intramural wavefront orientation from optical recordings in realistic whole-heart models.
Biophys J. 2006 Nov 15;91(10):3957-8. doi: 10.1529/biophysj.106.092544. Epub 2006 Aug 25.
10
Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1219-29. doi: 10.1109/TBME.2004.827261.

引用本文的文献

1
A comprehensive framework for evaluation of high pacing frequency and arrhythmic optical mapping signals.
Front Physiol. 2023 Jan 23;14:734356. doi: 10.3389/fphys.2023.734356. eCollection 2023.
2
High resolution optical mapping of cardiac electrophysiology in pre-clinical models.
Sci Data. 2022 Mar 31;9(1):135. doi: 10.1038/s41597-022-01253-1.
3
Examination of the Effects of Conduction Slowing on the Upstroke of Optically Recorded Action Potentials.
Front Physiol. 2019 Oct 11;10:1295. doi: 10.3389/fphys.2019.01295. eCollection 2019.
4
Tissue-Specific Optical Mapping Models of Swine Atria Informed by Optical Coherence Tomography.
Biophys J. 2018 Mar 27;114(6):1477-1489. doi: 10.1016/j.bpj.2018.01.035.
5
Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia.
Prog Biophys Mol Biol. 2016 Jul;121(2):185-94. doi: 10.1016/j.pbiomolbio.2016.06.004. Epub 2016 Jun 19.
6
Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve.
Prog Biophys Mol Biol. 2016 Jan;120(1-3):236-48. doi: 10.1016/j.pbiomolbio.2016.01.008. Epub 2016 Feb 2.
8
Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis.
Adv Exp Med Biol. 2015;859:343-65. doi: 10.1007/978-3-319-17641-3_14.
9
Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue?
J Mol Cell Cardiol. 2014 May;70(100):37-46. doi: 10.1016/j.yjmcc.2013.12.024. Epub 2014 Jan 8.
10
Advances in modeling ventricular arrhythmias: from mechanisms to the clinic.
Wiley Interdiscip Rev Syst Biol Med. 2014 Mar-Apr;6(2):209-24. doi: 10.1002/wsbm.1256. Epub 2013 Dec 6.

本文引用的文献

1
Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.
Biophys J. 2006 Apr 15;90(8):2938-45. doi: 10.1529/biophysj.105.076505. Epub 2006 Jan 27.
2
Optical action potential upstroke morphology reveals near-surface transmural propagation direction.
Circ Res. 2005 Aug 5;97(3):277-84. doi: 10.1161/01.RES.0000176022.74579.47. Epub 2005 Jun 30.
3
Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
Circ Res. 2005 Jul 22;97(2):168-75. doi: 10.1161/01.RES.0000174429.00987.17. Epub 2005 Jun 23.
4
Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1219-29. doi: 10.1109/TBME.2004.827261.
5
Spiral wave control by a localized stimulus: a bidomain model study.
J Cardiovasc Electrophysiol. 2004 Feb;15(2):226-33. doi: 10.1046/j.1540-8167.2004.03381.x.
6
Examination of optical depth effects on fluorescence imaging of cardiac propagation.
Biophys J. 2003 Dec;85(6):4134-45. doi: 10.1016/S0006-3495(03)74825-5.
7
8
Analysis of electrically induced reentrant circuits in a sheet of myocardium.
Ann Biomed Eng. 2003 Jul-Aug;31(7):768-80. doi: 10.1114/1.1581289.
9
Averaging over depth during optical mapping of unipolar stimulation.
IEEE Trans Biomed Eng. 2002 Sep;49(9):1051-4. doi: 10.1109/TBME.2002.802057.
10
Quantifying spatial localization of optical mapping using Monte Carlo simulations.
IEEE Trans Biomed Eng. 2001 Oct;48(10):1098-107. doi: 10.1109/10.951512.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验