Suppr超能文献

计算机模拟蛋白质片段化揭示关键核在结构域重新组装中的重要性。

In silico protein fragmentation reveals the importance of critical nuclei on domain reassembly.

作者信息

Contreras Martínez Lydia M, Borrero Quintana Ernesto E, Escobedo Fernando A, DeLisa Matthew P

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA.

出版信息

Biophys J. 2008 Mar 1;94(5):1575-88. doi: 10.1529/biophysj.107.119651. Epub 2007 Nov 9.

Abstract

Protein complementation assays (PCAs) based on split protein fragments have become powerful tools that facilitate the study and engineering of intracellular protein-protein interactions. These assays are based on the observation that a given protein can be split into two inactive fragments and these fragments can reassemble into the original properly folded and functional structure. However, one experimentally observed limitation of PCA systems is that the folding of a protein from its fragments is dramatically slower relative to that of the unsplit parent protein. This is due in part to a poor understanding of how PCA design parameters such as split site position in the primary sequence and size of the resulting fragments contribute to the efficiency of protein reassembly. We used a minimalist on-lattice model to analyze how the dynamics of the reassembly process for two model proteins was affected by the location of the split site. Our results demonstrate that the balanced distribution of the "folding nucleus," a subset of residues that are critical to the formation of the transition state leading to productive folding, between protein fragments is key to their reassembly.

摘要

基于分裂蛋白质片段的蛋白质互补分析(PCA)已成为促进细胞内蛋白质-蛋白质相互作用研究与工程设计的强大工具。这些分析基于这样的观察结果:给定的蛋白质可被分裂成两个无活性的片段,且这些片段能重新组装成原始的正确折叠且具有功能的结构。然而,PCA系统在实验中观察到的一个局限性是,相对于未分裂的亲本蛋白质,蛋白质从其片段折叠的速度要慢得多。部分原因是对PCA设计参数(如一级序列中的分裂位点位置和所得片段的大小)如何影响蛋白质重新组装效率的理解不足。我们使用了一个极简的晶格模型来分析两个模型蛋白质重新组装过程的动力学如何受到分裂位点位置的影响。我们的结果表明,“折叠核”(对导致有效折叠的过渡态形成至关重要的一部分残基)在蛋白质片段之间的平衡分布是它们重新组装的关键。

相似文献

1
In silico protein fragmentation reveals the importance of critical nuclei on domain reassembly.
Biophys J. 2008 Mar 1;94(5):1575-88. doi: 10.1529/biophysj.107.119651. Epub 2007 Nov 9.
2
Kinetics and reaction coordinates of the reassembly of protein fragments via forward flux sampling.
Biophys J. 2010 May 19;98(9):1911-20. doi: 10.1016/j.bpj.2009.12.4329.
4
Analysis of fragments induced by simulated lattice protein folding.
C R Biol. 2004 May;327(5):431-43. doi: 10.1016/j.crvi.2004.02.002.
5
Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments.
J Mol Biol. 1999 Jan 22;285(3):1309-33. doi: 10.1006/jmbi.1998.2249.
9
A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods.
Biophys J. 2019 Jul 9;117(1):56-65. doi: 10.1016/j.bpj.2019.06.002. Epub 2019 Jun 7.
10
A rapid test for identification of autonomous folding units in proteins.
J Mol Biol. 2000 Sep 22;302(3):701-12. doi: 10.1006/jmbi.2000.4049.

引用本文的文献

本文引用的文献

1
Parallel tempering: theory, applications, and new perspectives.
Phys Chem Chem Phys. 2005 Dec 7;7(23):3910-6. doi: 10.1039/b509983h.
2
Reaction coordinates and transition pathways of rare events via forward flux sampling.
J Chem Phys. 2007 Oct 28;127(16):164101. doi: 10.1063/1.2776270.
4
Complementary methods for studies of protein interactions in living cells.
Nat Methods. 2006 Dec;3(12):969-71. doi: 10.1038/nmeth1206-969.
5
Folding kinetics of a lattice protein via a forward flux sampling approach.
J Chem Phys. 2006 Oct 28;125(16):164904. doi: 10.1063/1.2357944.
6
Visualization of molecular interactions by fluorescence complementation.
Nat Rev Mol Cell Biol. 2006 Jun;7(6):449-56. doi: 10.1038/nrm1929.
7
Prediction of viable circular permutants using a graph theoretic approach.
Bioinformatics. 2006 Jun 1;22(11):1353-8. doi: 10.1093/bioinformatics/btl095. Epub 2006 Mar 16.
8
Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study.
Biotechnol Bioeng. 2006 May 5;94(1):105-17. doi: 10.1002/bit.20832.
9
Towards a proteome-scale map of the human protein-protein interaction network.
Nature. 2005 Oct 20;437(7062):1173-8. doi: 10.1038/nature04209. Epub 2005 Sep 28.
10
Detecting protein-protein interactions with GFP-fragment reassembly.
Nat Methods. 2004 Dec;1(3):255-62. doi: 10.1038/nmeth1204-255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验