Suppr超能文献

一个单一的蛋白质破坏位点导致通过多种工程方法实现有效的重组。

A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods.

机构信息

Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York.

Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York.

出版信息

Biophys J. 2019 Jul 9;117(1):56-65. doi: 10.1016/j.bpj.2019.06.002. Epub 2019 Jun 7.

Abstract

Disrupting a protein's sequence by cleavage or insertion of a hinge domain forms the basis for protein engineering tools, including fragment complementation, circular permutation, and domain swapping. Despite the utility of these designs, their widespread implementation has been limited by the difficulty in choosing where to interrupt the protein sequence: the resulting fragments often aggregate or fail to reassemble. Here, we show that an optimal site exists within ribose binding protein (RBP) that, when disrupted, results in the most efficient formation of fragment-complemented and domain-swapped species. Cleaving RBP at this site also produces a highly stable, cooperatively folded circular permutant. This hot-spot site was identified by an experimental approach involving selection among competing folds. We find that efficiency in the case of RBP is determined by kinetic factors (survival of the first) rather than thermodynamics (survival of the fittest). Together with emerging computational tools, this limited data set defines a pathway for designing robust platforms for molecular switches and biosensors based on the aforementioned protein modifications.

摘要

通过切割或插入铰链结构域来破坏蛋白质的序列,这是蛋白质工程工具的基础,包括片段互补、环状排列和结构域交换。尽管这些设计具有实用性,但由于难以选择在何处打断蛋白质序列,它们的广泛应用受到了限制:产生的片段通常会聚集或无法重新组装。在这里,我们表明,在核糖结合蛋白(RBP)中存在一个最佳的断裂位点,当该位点被破坏时,会导致片段互补和结构域交换物种的形成效率最高。在该位点切割 RBP 还会产生一种高度稳定的、协同折叠的环状排列变体。这个热点是通过一种涉及竞争折叠选择的实验方法确定的。我们发现,在 RBP 的情况下,效率是由动力学因素(第一个的生存)决定的,而不是热力学因素(适者生存)。结合新兴的计算工具,这个有限的数据集为基于上述蛋白质修饰的分子开关和生物传感器的设计提供了一种稳健平台的途径。

相似文献

1
A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods.
Biophys J. 2019 Jul 9;117(1):56-65. doi: 10.1016/j.bpj.2019.06.002. Epub 2019 Jun 7.
2
Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy.
Protein Sci. 2007 Mar;16(3):362-8. doi: 10.1110/ps.062595707. Epub 2007 Jan 22.
3
Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.
J Phys Chem B. 2014 Oct 2;118(39):11449-54. doi: 10.1021/jp507463q. Epub 2014 Sep 19.
4
In silico protein fragmentation reveals the importance of critical nuclei on domain reassembly.
Biophys J. 2008 Mar 1;94(5):1575-88. doi: 10.1529/biophysj.107.119651. Epub 2007 Nov 9.
6
Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
J Mol Biol. 2015 Aug 14;427(16):2697-706. doi: 10.1016/j.jmb.2015.06.006. Epub 2015 Jun 21.
7
Carbohydrate affinity for the glucose-galactose binding protein is regulated by allosteric domain motions.
J Am Chem Soc. 2012 Dec 5;134(48):19869-76. doi: 10.1021/ja3092938. Epub 2012 Nov 19.
8
Stability and folding of precursor and mature tryptophan-substituted ribose binding protein of Escherichia coli.
Arch Biochem Biophys. 1996 Apr 1;328(1):78-84. doi: 10.1006/abbi.1996.0145.
9
Enzymatic protein switches built from paralogous input domains.
Biotechnol Bioeng. 2016 Apr;113(4):852-8. doi: 10.1002/bit.25852. Epub 2015 Oct 26.
10
Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion.
Biomed Res Int. 2019 Jan 3;2019:4798793. doi: 10.1155/2019/4798793. eCollection 2019.

引用本文的文献

2
Enhancing response of a protein conformational switch by using two disordered ligand binding domains.
Front Mol Biosci. 2023 Mar 2;10:1114756. doi: 10.3389/fmolb.2023.1114756. eCollection 2023.
3
Engineering protein and DNA tools for creating DNA-dependent protein switches.
Methods Enzymol. 2022;675:1-32. doi: 10.1016/bs.mie.2022.07.002. Epub 2022 Aug 23.
4
Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia.
iScience. 2022 Mar 26;25(4):104170. doi: 10.1016/j.isci.2022.104170. eCollection 2022 Apr 15.
5
Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange.
ACS Sens. 2022 Jan 28;7(1):263-271. doi: 10.1021/acssensors.1c02239. Epub 2022 Jan 10.
6
Peptide array-based interactomics.
Anal Bioanal Chem. 2021 Sep;413(22):5561-5566. doi: 10.1007/s00216-021-03367-8. Epub 2021 May 3.

本文引用的文献

1
Controlling protein conformation with light.
Curr Opin Struct Biol. 2019 Aug;57:17-22. doi: 10.1016/j.sbi.2019.01.012. Epub 2019 Mar 5.
2
Split Green Fluorescent Proteins: Scope, Limitations, and Outlook.
Annu Rev Biophys. 2019 May 6;48:19-44. doi: 10.1146/annurev-biophys-051013-022846. Epub 2019 Feb 20.
3
Computational design of chemogenetic and optogenetic split proteins.
Nat Commun. 2018 Oct 2;9(1):4042. doi: 10.1038/s41467-018-06531-4.
4
Construction of Protein Switches by Domain Insertion and Directed Evolution.
Methods Mol Biol. 2017;1596:43-55. doi: 10.1007/978-1-4939-6940-1_3.
7
Engineered Domain Swapping as an On/Off Switch for Protein Function.
Chem Biol. 2015 Oct 22;22(10):1384-93. doi: 10.1016/j.chembiol.2015.09.007.
9
Protein conformational switches: from nature to design.
Chemistry. 2012 Jun 25;18(26):7984-99. doi: 10.1002/chem.201200348. Epub 2012 Jun 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验