Antal T, Krapivsky P L, Redner S, Mailman M, Chakraborty B
Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041907. doi: 10.1103/PhysRevE.76.041907. Epub 2007 Oct 10.
We investigate a simple dynamical model of a microtubule that evolves by attachment of guanosine triphosphate (GTP) tubulin to its end, irreversible conversion of GTP to guanosine diphosphate (GDP) tubulin by hydrolysis, and detachment of GDP at the end of a microtubule. As a function of rates of these processes, the microtubule can grow steadily or its length can fluctuate wildly. In the regime where detachment can be neglected, we find exact expressions for the tubule and GTP cap length distributions, as well as power-law length distributions of GTP and GDP islands. In the opposite limit of instantaneous detachment, we find the time between catastrophes, where the microtubule shrinks to zero length, and determine the size distribution of avalanches (sequence of consecutive GDP detachment events). We obtain the phase diagram for general rates and verify our predictions by numerical simulations.
我们研究了一种微管的简单动力学模型,该模型通过鸟苷三磷酸(GTP)微管蛋白附着于其末端、通过水解将GTP不可逆地转化为鸟苷二磷酸(GDP)微管蛋白以及在微管末端的GDP脱离来演化。作为这些过程速率的函数,微管可以稳定生长,或者其长度可以剧烈波动。在可以忽略脱离的情况下,我们找到了微管和GTP帽长度分布的精确表达式,以及GTP和GDP岛的幂律长度分布。在瞬时脱离的相反极限情况下,我们找到了微管收缩至零长度的灾难之间的时间,并确定了雪崩(连续GDP脱离事件序列)的大小分布。我们得到了一般速率的相图,并通过数值模拟验证了我们的预测。