Suppr超能文献

微管的分子力学模型。

A molecular-mechanical model of the microtubule.

作者信息

Molodtsov Maxim I, Ermakova Elena A, Shnol Emmanuil E, Grishchuk Ekaterina L, McIntosh J Richard, Ataullakhanov Fazly I

机构信息

Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, Colorado, USA.

出版信息

Biophys J. 2005 May;88(5):3167-79. doi: 10.1529/biophysj.104.051789. Epub 2005 Feb 18.

Abstract

Dynamic instability of MTs is thought to be regulated by biochemical transformations within tubulin dimers that are coupled to the hydrolysis of bound GTP. Structural studies of nucleotide-bound tubulin dimers have recently provided a concrete basis for understanding how these transformations may contribute to MT dynamic instability. To analyze these ideas, we have developed a molecular-mechanical model in which structural and biochemical properties of tubulin are used to predict the shape and stability of MTs. From simple and explicit features of tubulin, we define bond energy relationships and explore the impact of their variations on integral MT properties. This modeling provides quantitative predictions about the GTP cap. It specifies important mechanical features underlying MT instability and shows that this property does not require GTP-hydrolysis to alter the strength of tubulin-tubulin bonds. The MT plus end is stabilized by at least two layers of GTP-tubulin subunits, whereas the minus end requires at least one; this and other differences between the ends are explained by asymmetric force balances. Overall, this model provides a new link between the biophysical characteristics of tubulin and the physiological behavior of MTs. It will also be useful in building a more complete description of MT dynamics and mechanics.

摘要

微管(MT)的动态不稳定性被认为是由微管蛋白二聚体内与结合的GTP水解偶联的生化转变所调节的。核苷酸结合的微管蛋白二聚体的结构研究最近为理解这些转变如何导致MT动态不稳定性提供了具体依据。为了分析这些观点,我们开发了一个分子力学模型,其中微管蛋白的结构和生化特性被用于预测MT的形状和稳定性。从微管蛋白简单而明确的特征出发,我们定义了键能关系,并探讨了它们的变化对完整MT特性的影响。该模型提供了关于GTP帽的定量预测。它明确了MT不稳定性背后的重要力学特征,并表明这种特性不需要GTP水解来改变微管蛋白-微管蛋白键的强度。MT的正端由至少两层GTP-微管蛋白亚基稳定,而负端至少需要一层;两端之间的这种差异以及其他差异通过不对称的力平衡来解释。总体而言,该模型在微管蛋白的生物物理特性与MT的生理行为之间建立了新的联系。它对于构建更完整的MT动力学和力学描述也将是有用的。

相似文献

1
A molecular-mechanical model of the microtubule.
Biophys J. 2005 May;88(5):3167-79. doi: 10.1529/biophysj.104.051789. Epub 2005 Feb 18.
2
Estimates of lateral and longitudinal bond energies within the microtubule lattice.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40. doi: 10.1073/pnas.092504999.
4
Structural model for differential cap maturation at growing microtubule ends.
Elife. 2020 Mar 10;9:e50155. doi: 10.7554/eLife.50155.
5
Compartment volume influences microtubule dynamic instability: a model study.
Biophys J. 2006 Feb 1;90(3):788-98. doi: 10.1529/biophysj.105.059410.
6
Mechanics and kinetics of dynamic instability.
Elife. 2020 May 11;9:e54077. doi: 10.7554/eLife.54077.
7
GDP-tubulin incorporation into growing microtubules modulates polymer stability.
J Biol Chem. 2010 Jun 4;285(23):17507-13. doi: 10.1074/jbc.M109.099515. Epub 2010 Apr 6.
8
Effect of Nucleotide State on the Protofilament Conformation of Tubulin Octamers.
J Phys Chem B. 2018 Jun 14;122(23):6164-6178. doi: 10.1021/acs.jpcb.8b02193. Epub 2018 Jun 6.
10
Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
Biochemistry. 2003 Feb 25;42(7):2122-6. doi: 10.1021/bi027010s.

引用本文的文献

2
Microtubule dynamics are defined by conformations and stability of clustered protofilaments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424263122. doi: 10.1073/pnas.2424263122. Epub 2025 May 29.
3
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.
Biophys J. 2025 Jan 21;124(2):227-244. doi: 10.1016/j.bpj.2024.11.3314. Epub 2024 Nov 27.
4
Minimal Mechanisms of Microtubule Length Regulation in Living Cells.
Bull Math Biol. 2024 Apr 16;86(5):58. doi: 10.1007/s11538-024-01279-z.
6
Measuring and modeling forces generated by microtubules.
Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.
7
Beyond the GTP-cap: Elucidating the molecular mechanisms of microtubule catastrophe.
Bioessays. 2023 Jan;45(1):e2200081. doi: 10.1002/bies.202200081. Epub 2022 Nov 18.
9
Effects of random hydrolysis on biofilament length distributions in a shared subunit pool.
Biophys J. 2022 Feb 1;121(3):502-514. doi: 10.1016/j.bpj.2021.12.028. Epub 2021 Dec 23.
10
Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length.
Front Mol Biosci. 2021 Feb 15;7:632122. doi: 10.3389/fmolb.2020.632122. eCollection 2020.

本文引用的文献

2
"Search-and-capture" of microtubules through plus-end-binding proteins (+TIPs).
J Biochem. 2003 Sep;134(3):321-6. doi: 10.1093/jb/mvg148.
3
The physical basis of microtubule structure and stability.
Protein Sci. 2003 Oct;12(10):2257-61. doi: 10.1110/ps.03187503.
4
Surfing on microtubule ends.
Trends Cell Biol. 2003 May;13(5):229-37. doi: 10.1016/s0962-8924(03)00074-6.
5
Tubulin rings: which way do they curve?
Curr Opin Struct Biol. 2003 Apr;13(2):256-61. doi: 10.1016/s0959-440x(03)00029-0.
6
Dynamics and mechanics of the microtubule plus end.
Nature. 2003 Apr 17;422(6933):753-8. doi: 10.1038/nature01600.
7
Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
Biochemistry. 2003 Feb 25;42(7):2122-6. doi: 10.1021/bi027010s.
8
Microtubule structure at 8 A resolution.
Structure. 2002 Oct;10(10):1317-28. doi: 10.1016/s0969-2126(02)00827-4.
9
Concentration dependence of variability in growth rates of microtubules.
Biophys J. 2002 Oct;83(4):1809-19. doi: 10.1016/S0006-3495(02)73946-5.
10
Structural microtubule cap: stability, catastrophe, rescue, and third state.
Biophys J. 2002 Sep;83(3):1317-30. doi: 10.1016/S0006-3495(02)73902-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验