Suppr超能文献

微管结构与自组装动力学的机械化学模型

Mechanochemical model of microtubule structure and self-assembly kinetics.

作者信息

VanBuren Vincent, Cassimeris Lynne, Odde David J

机构信息

Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.

出版信息

Biophys J. 2005 Nov;89(5):2911-26. doi: 10.1529/biophysj.105.060913. Epub 2005 Jun 10.

Abstract

Microtubule self-assembly is largely governed by the chemical kinetics and thermodynamics of tubulin-tubulin interactions. An important aspect of microtubule assembly is that hydrolysis of the beta-tubulin-associated GTP promotes protofilament curling. Protofilament curling presumably drives the transition from tip structures associated with growth (sheetlike projections and blunt ends) to those associated with shortening (rams' horns and frayed ends), and transitions between these structures have been proposed to be important for growth-shortening transitions. However, previous models for microtubule dynamic instability have not considered such structures or mechanics explicitly. Here we present a three-dimensional model that explicitly incorporates mechanical stress and strain within the microtubule lattice. First, we found that the model recapitulates three-dimensional tip structures and rates of assembly and disassembly for microtubules grown under standard conditions, and we propose that taxol may stabilize microtubule growth by reducing flexural rigidity. Second, in contrast to recent suggestions, it was determined that sheetlike tips are more likely to undergo catastrophe than blunt tips. Third, partial uncapping of the tubulin-GTP cap provides a possible mechanism for microtubule pause events. Finally, simulations of the binding and structural effects of XMAP215 produced the experimentally observed growth and shortening rates, and tip structure.

摘要

微管的自我组装在很大程度上受微管蛋白-微管蛋白相互作用的化学动力学和热力学支配。微管组装的一个重要方面是,与β-微管蛋白相关的GTP水解会促进原丝卷曲。原丝卷曲大概驱动了从与生长相关的顶端结构(片状突起和钝端)到与缩短相关的顶端结构(羊角状和磨损端)的转变,并且有人提出这些结构之间的转变对于生长-缩短转变很重要。然而,先前的微管动态不稳定性模型并未明确考虑此类结构或力学。在此,我们提出一个三维模型,该模型明确纳入了微管晶格内的机械应力和应变。首先,我们发现该模型概括了在标准条件下生长的微管的三维顶端结构以及组装和解聚速率,并且我们提出紫杉醇可能通过降低弯曲刚度来稳定微管生长。其次,与最近的观点相反,已确定片状顶端比钝端更有可能发生灾变。第三,微管蛋白-GTP帽的部分去帽为微管暂停事件提供了一种可能的机制。最后,对XMAP215的结合和结构效应的模拟产生了实验观察到的生长和缩短速率以及顶端结构。

相似文献

1
Mechanochemical model of microtubule structure and self-assembly kinetics.
Biophys J. 2005 Nov;89(5):2911-26. doi: 10.1529/biophysj.105.060913. Epub 2005 Jun 10.
2
Estimates of lateral and longitudinal bond energies within the microtubule lattice.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40. doi: 10.1073/pnas.092504999.
4
A molecular-mechanical model of the microtubule.
Biophys J. 2005 May;88(5):3167-79. doi: 10.1529/biophysj.104.051789. Epub 2005 Feb 18.
5
Mechanics and kinetics of dynamic instability.
Elife. 2020 May 11;9:e54077. doi: 10.7554/eLife.54077.
6
Structural microtubule cap: stability, catastrophe, rescue, and third state.
Biophys J. 2002 Sep;83(3):1317-30. doi: 10.1016/S0006-3495(02)73902-7.
7
Effect of Nucleotide State on the Protofilament Conformation of Tubulin Octamers.
J Phys Chem B. 2018 Jun 14;122(23):6164-6178. doi: 10.1021/acs.jpcb.8b02193. Epub 2018 Jun 6.
8
Dynamics of an idealized model of microtubule growth and catastrophe.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041907. doi: 10.1103/PhysRevE.76.041907. Epub 2007 Oct 10.
9
Metastability of microtubules induced by competing internal forces.
Biophys J. 2007 May 1;92(9):3092-7. doi: 10.1529/biophysj.106.091793. Epub 2007 Feb 16.
10
Dynamics and length distribution of microtubules under force and confinement.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041918. doi: 10.1103/PhysRevE.86.041918. Epub 2012 Oct 31.

引用本文的文献

2
3
Estradiol pauses microtubule growth without increased incidence of catastrophe events.
Commun Biol. 2025 Jun 18;8(1):938. doi: 10.1038/s42003-025-08362-8.
4
Microtubule dynamics are defined by conformations and stability of clustered protofilaments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424263122. doi: 10.1073/pnas.2424263122. Epub 2025 May 29.
5
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.
Biophys J. 2025 Jan 21;124(2):227-244. doi: 10.1016/j.bpj.2024.11.3314. Epub 2024 Nov 27.
8
Measuring and modeling forces generated by microtubules.
Biophys Rev. 2023 Oct 13;15(5):1095-1110. doi: 10.1007/s12551-023-01161-7. eCollection 2023 Oct.
10
The rate of microtubule breaking increases exponentially with curvature.
Sci Rep. 2022 Dec 3;12(1):20899. doi: 10.1038/s41598-022-24912-0.

本文引用的文献

1
Force production by depolymerizing microtubules: a theoretical study.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4353-8. doi: 10.1073/pnas.0501142102. Epub 2005 Mar 14.
2
A molecular-mechanical model of the microtubule.
Biophys J. 2005 May;88(5):3167-79. doi: 10.1529/biophysj.104.051789. Epub 2005 Feb 18.
3
Microtubules as a target for anticancer drugs.
Nat Rev Cancer. 2004 Apr;4(4):253-65. doi: 10.1038/nrc1317.
4
Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain.
Nature. 2004 Mar 11;428(6979):198-202. doi: 10.1038/nature02393.
5
The physical basis of microtubule structure and stability.
Protein Sci. 2003 Oct;12(10):2257-61. doi: 10.1110/ps.03187503.
7
Dynamics and mechanics of the microtubule plus end.
Nature. 2003 Apr 17;422(6933):753-8. doi: 10.1038/nature01600.
8
Structural microtubule cap: stability, catastrophe, rescue, and third state.
Biophys J. 2002 Sep;83(3):1317-30. doi: 10.1016/S0006-3495(02)73902-7.
9
Estimates of lateral and longitudinal bond energies within the microtubule lattice.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40. doi: 10.1073/pnas.092504999.
10
XMAP215 is a long thin molecule that does not increase microtubule stiffness.
J Cell Sci. 2001 Aug;114(Pt 16):3025-33. doi: 10.1242/jcs.114.16.3025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验