Alber Mark, Chen Nan, Lushnikov Pavel M, Newman Stuart A
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46656, USA.
Phys Rev Lett. 2007 Oct 19;99(16):168102. doi: 10.1103/PhysRevLett.99.168102.
We derive a continuous limit of a two-dimensional stochastic cellular Potts model (CPM) describing cells moving in a medium and reacting to each other through direct contact, cell-cell adhesion, and long-range chemotaxis. All coefficients of the general macroscopic model in the form of a Fokker-Planck equation describing evolution of the cell probability density function are derived from parameters of the CPM. A very good agreement is demonstrated between CPM Monte Carlo simulations and a numerical solution of the macroscopic model. It is also shown that, in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. A general multiscale approach is demonstrated by simulating spongy bone formation, suggesting that self-organizing physical mechanisms can account for this developmental process.
我们推导了一个二维随机细胞Potts模型(CPM)的连续极限,该模型描述了细胞在介质中移动并通过直接接触、细胞间粘附和长程趋化作用相互反应。以福克-普朗克方程形式描述细胞概率密度函数演化的一般宏观模型的所有系数均由CPM的参数推导得出。CPM蒙特卡罗模拟与宏观模型的数值解之间显示出非常好的一致性。还表明,在没有接触性细胞间相互作用的情况下,所得到的模型简化为经典的宏观凯勒-西格尔模型。通过模拟松质骨形成展示了一种通用的多尺度方法,这表明自组织物理机制可以解释这一发育过程。