Suppr超能文献

用于生物应用的广义Cahn-Hilliard方程。

Generalized Cahn-Hilliard equation for biological applications.

作者信息

Khain Evgeniy, Sander Leonard M

机构信息

Department of Physics, Oakland University, Rochester, Michigan 48309, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051129. doi: 10.1103/PhysRevE.77.051129. Epub 2008 May 28.

Abstract

Recently we considered a stochastic discrete model which describes fronts of cells invading a wound [E. Khain, L. M. Sander, and C. M. Schneider-Mizell, J. Stat. Phys. 128, 209 (2007)]. In the model cells can move, proliferate, and experience cell-cell adhesion. In this work we focus on a continuum description of this phenomenon by means of a generalized Cahn-Hilliard equation (GCH) with a proliferation term. As in the discrete model, there are two interesting regimes. For subcritical adhesion, there are propagating "pulled" fronts, similar to those of the Fisher-Kolmogorov equation. The problem of front velocity selection is examined, and our theoretical predictions are in the good agreement with a numerical solution of the GCH equation. For supercritical adhesion, there is a nontrivial transient behavior, where density profile exhibits a secondary peak. To analyze this regime, we investigated relaxation dynamics for the Cahn-Hilliard equation without proliferation. We found that the relaxation process exhibits self-similar behavior. The results of continuum and discrete models are in good agreement with each other for the different regimes we analyzed.

摘要

最近,我们考虑了一个随机离散模型,该模型描述了细胞侵入伤口的前沿 [E. 凯因、L. M. 桑德和 C. M. 施奈德 - 米泽尔,《统计物理杂志》128, 209 (2007)]。在该模型中,细胞能够移动、增殖并经历细胞间粘附。在这项工作中,我们通过带有增殖项的广义卡恩 - 希利厄德方程(GCH)来关注这一现象的连续介质描述。与离散模型一样,存在两种有趣的情况。对于亚临界粘附,存在传播的“被拉动”前沿,类似于费希尔 - 科尔莫戈罗夫方程的前沿。研究了前沿速度选择问题,我们的理论预测与 GCH 方程的数值解吻合良好。对于超临界粘附,存在一种非平凡的瞬态行为,其中密度分布呈现出一个次峰。为了分析这种情况,我们研究了无增殖的卡恩 - 希利厄德方程的弛豫动力学。我们发现弛豫过程呈现出自相似行为。对于我们分析的不同情况,连续介质模型和离散模型的结果彼此吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验