Verschelde Henri, Dierckx Hans, Bernus Olivier
Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
Phys Rev Lett. 2007 Oct 19;99(16):168104. doi: 10.1103/PhysRevLett.99.168104. Epub 2007 Oct 18.
It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation.
据推测,心脏组织中的静止涡旋波细丝在一个弯曲空间中描绘出一条测地线,该空间的度规是逆扩散张量。一些数值研究支持这一假设,但尚未针对一般各向异性给出解析证明。在本信函中,我们推导了一般各向异性情况下细丝的动力学方程。这些方程在一般空间坐标变换下是协变的,并且描述了一个线状物体在度规张量为逆扩散张量的弯曲空间中的运动。因此,具有各向异性的可激发介质中涡旋波细丝的行为类似于弯曲宇宙中宇宙弦的行为。我们的动力学方程适用于细细丝和一般各向异性情况。我们表明静止细丝服从测地线方程。