Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15063-8. doi: 10.1073/pnas.1008837107. Epub 2010 Aug 9.
It is well established that wave propagation in the heart is anisotropic and that the ratio of velocities in the three principal directions may be as large as v(f)v(s)v(n) approximately 4(fibers)2(sheets)1(normal). We develop an alternative view of the heart based on this fact by considering it as a non-Euclidean manifold with an electrophysiological(el-) metric based on wave velocity. This metric is more natural than the Euclidean metric for some applications, because el-distances directly encode wave propagation. We develop a model of wave propagation based on this metric; this model ignores higher-order effects like the curvature of wavefronts and the effect of the boundary, but still gives good predictions of local activation times and replicates many of the observed features of isochrones. We characterize this model for the important case of the rotational orthotropic anisotropy seen in cardiac tissue and perform numerical simulations for a slab of cardiac tissue with rotational orthotropic anisotropy and for a model of the ventricles based on diffusion tensor MRI scans of the canine heart. Even though the metric has many slow directions, we show that the rotation of the fibers leads to fast global activation. In the diffusion tensor MRI-based model, with principal velocities 0.25051 m/s, we find examples of wavefronts that eventually reach speeds up to 0.9 m/s and average velocities of 0.7 m/s. We believe that development of this non-Euclidean approach to cardiac anatomy and electrophysiology could become an important tool for the characterization of the normal and abnormal electrophysiological activity of the heart.
众所周知,心脏中的波传播是各向异性的,并且三个主方向上的速度比大约为 v(f)v(s)v(n) 约为 4(fibers)2(sheets)1(normal)。我们基于这一事实,通过将心脏视为具有基于波速的电生理(el-)度量的非欧几里得流形,提出了一种心脏的替代观点。对于某些应用,这种度量比欧几里得度量更自然,因为 el-距离直接编码波传播。我们基于该度量开发了一种波传播模型;该模型忽略了波阵面曲率和边界效应等更高阶效应,但仍然可以很好地预测局部激活时间,并复制了等时线的许多观察到的特征。我们针对心脏组织中可见的旋转各向异性的重要情况对该模型进行了特征描述,并对具有旋转各向异性的心脏组织薄片和基于犬心扩散张量 MRI 扫描的心室模型进行了数值模拟。尽管该度量有许多缓慢的方向,但我们表明纤维的旋转导致快速的全局激活。在基于扩散张量 MRI 的模型中,具有主速度 0.25051 m/s,我们找到了波阵面的示例,这些波阵面最终达到了 0.9 m/s 的速度,平均速度为 0.7 m/s。我们相信,这种非欧几里得方法在心脏解剖学和电生理学中的发展可能成为心脏正常和异常电生理活动特征描述的重要工具。