Huang Biqin, Monsma Douwe J, Appelbaum Ian
Electrical and Computer Engineering Department, University of Delaware, Newark, Delaware, 19716, USA.
Phys Rev Lett. 2007 Oct 26;99(17):177209. doi: 10.1103/PhysRevLett.99.177209.
We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.
我们采用全电学方法,将自旋极化电子垂直注入、传输并探测穿过一个350微米厚的未掺杂单晶硅片。在不同加速电场下于垂直磁场中进行的自旋进动测量显示出高自旋相干性,进动角至少为13π。利用进动极值的磁场间距来确定从注入器到探测器的电子渡越时间。这些渡越时间值与输出磁电流变化(来自面内自旋阀测量)相关,而输出磁电流变化与最终的自旋极化成正比。将结果拟合到一个简单的指数自旋衰减模型,得出在60K时硅中传导电子自旋寿命(T1)的下限超过500纳秒。