Suppr超能文献

基于小波变换的超声乳腺图像中实性结节分割

Segmentation of solid nodules in ultrasonographic breast image based on wavelet transform.

作者信息

Park Sangyun, Kong Hyoun-Joong, Moon Woo Kyoung, Kim Hee Chan

机构信息

Interdisciplinary Program, Biomedical Engineering Major, Graduate School, Seoul National University, Seoul, Korea.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5650-3. doi: 10.1109/IEMBS.2007.4353628.

Abstract

An accurate segmentation of solid nodules in ultrasonographic (US) breast image is presented. 1-level 2-dimensional Discrete Wavelet Transform (DWT) is used to create features reflecting the texture information of the original image. Using these features, the texture classification is achieved. Finally, solid nodule region is segmented from the classified texture region. Proper threshold for texture classification is automatically decided. Empirically acquired information about the relationship between the texture characteristic of the original image and the optimal threshold is examined and used. Presented algorithm is applied to 284 malignant solid nodules and 300 benign solid nodules and the resulting images are presented.

摘要

本文提出了一种对超声(US)乳腺图像中实性结节进行准确分割的方法。采用一级二维离散小波变换(DWT)来创建反映原始图像纹理信息的特征。利用这些特征实现纹理分类。最后,从分类后的纹理区域中分割出实性结节区域。自动确定纹理分类的合适阈值。研究并使用了通过经验获取的关于原始图像纹理特征与最佳阈值之间关系的信息。将所提出的算法应用于284个恶性实性结节和300个良性实性结节,并展示了所得图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验