de Diego A M G, Gandía L, García A G
Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Acta Physiol (Oxf). 2008 Feb;192(2):287-301. doi: 10.1111/j.1748-1716.2007.01807.x. Epub 2007 Nov 15.
Here we review the tight neural control of the differential secretion into the circulation, of the adrenal medullary hormones adrenaline and noradrenaline. One or the other catecholamines are differentially released on various stress conditions. This is specifically controlled by central nervous system nuclei at the cortex, hypothalamus and spinal cord. Different firing patterns of splanchnic nerves and nicotinic or muscarinic receptors cause the selective release of noradrenaline or adrenaline, to adapt the body to the 'fight or flight' reaction, or during severe hypoglycaemia, haemorrhage, cold, acute myocardial infarction or other severe stressful conflicts. Endogenously acetylcholine (ACh) released at the splanchnic nerve-chromaffin cell synapse, acting on muscarinic and nicotinic receptors, causes membrane depolarization and action potentials (AP) in chromaffin cells. These changes vary with the animal species, the cell preparation (intact bisected adrenal, adrenal slices, or isolated fresh or cultured cells) or the recording technique (intracellular microelectrodes, patch-clamp, perforated-patch, cell-attached). Conflicting results leave many open questions concerning the actions of ACh on chromaffin cell excitability. The use of adrenal slices and field electrical stimulation will surely provide new insights into these mechanisms. Chromaffin cells have been thoroughly used as models to study the relationship between Ca2+ entry, cytosolic Ca2+ signals, exocytosis and endocytosis, using patch-clamp and amperometric techniques. Cells have been stimulated with single depolarizing pulses (DPs), DP trains and with simulated AP waveforms. These approaches have provided useful information but we have no data on APs generated by pulsatile secretory quanta of ACh, trying to mimic the intermittent and repetitive splanchnic nerve discharge of the neurotransmitter. We present some recent experiments using ultrashort ACh pulses (25 ms), that cause non-desensitizing repetitive APs with each ACh pulse, at low ACh concentrations (30 microM). Ultrashort pulses of a high ACh concentration (1000 microM) causes a single AP followed by a prolonged depolarization. It could be interesting trying to correlate these 'patterns of splanchnic nerve discharge' with Ca2+ signals and exocytosis. This, together with the use of adrenal slices and transmural electrical stimulation of splanchnic nerves will provide new physiologically sound data on the regulation of adrenal medullary secretion.
在此,我们回顾了肾上腺髓质激素肾上腺素和去甲肾上腺素向循环系统中差异分泌的紧密神经控制。在各种应激条件下,一种或另一种儿茶酚胺会差异释放。这具体由大脑皮层、下丘脑和脊髓中的中枢神经系统核团控制。内脏神经不同的放电模式以及烟碱样或毒蕈碱样受体导致去甲肾上腺素或肾上腺素的选择性释放,以使身体适应“战斗或逃跑”反应,或在严重低血糖、出血、寒冷、急性心肌梗死或其他严重应激冲突期间。在内脏神经 - 嗜铬细胞突触处释放的内源性乙酰胆碱(ACh)作用于毒蕈碱样和烟碱样受体,导致嗜铬细胞膜去极化和动作电位(AP)。这些变化因动物种类、细胞制备方法(完整的对半肾上腺、肾上腺切片或分离的新鲜或培养细胞)或记录技术(细胞内微电极、膜片钳、穿孔膜片、细胞吸附)而异。相互矛盾的结果留下了许多关于ACh对嗜铬细胞兴奋性作用的未解决问题。使用肾上腺切片和场电刺激肯定会为这些机制提供新的见解。嗜铬细胞已被充分用作模型,使用膜片钳和安培测量技术来研究Ca²⁺内流、胞质Ca²⁺信号、胞吐作用和内吞作用之间的关系。细胞已用单个去极化脉冲(DPs)、DP序列和模拟AP波形进行刺激。这些方法提供了有用的信息,但我们没有关于由ACh的脉动分泌量子产生的AP的数据,试图模拟神经递质的间歇性和重复性内脏神经放电。我们展示了一些最近使用超短ACh脉冲(25毫秒)的实验,在低ACh浓度(30微摩尔)下,每个ACh脉冲都会引起不脱敏的重复性AP。高ACh浓度(1000微摩尔)的超短脉冲会引起单个AP,随后是长时间的去极化。尝试将这些“内脏神经放电模式”与Ca²⁺信号和胞吐作用相关联可能会很有趣。这与使用肾上腺切片和内脏神经的跨壁电刺激一起,将为肾上腺髓质分泌的调节提供新的生理学可靠数据。