Koenderink Jan J, Van Doorn Andrea J, Pont Sylvia C
Universiteit Utrecht, Utrecht, The Netherlands.
Percept Psychophys. 2007 Aug;69(6):895-903. doi: 10.3758/bf03193926.
Human observers estimate the illumination direction of rough surfaces rather precisely. When surfaces are rough, the illumination generates visible "texture" from differential shading at the level of the roughness, whereas differential illumination at the level of significant global surface curvature leads to the more familiar "shading". The shading is used in conventional shape-from-shading (SFS) algorithms, which ignore the illumination texture cue. Because of this simplification, SFS algorithms are typically formulated as global problems (partial differential equations, etc.). Human observers are likely to apply different methods than do these conventional SFS algorithms, however. When the roughness is not isotropic, one expects systematic errors in the visual detection of illumination direction, conceivably giving rise to erroneous shape estimates. Here we addressed this issue through systematic psychophysics on illumination direction detection as a function of the roughness anisotropy. Our expectations were fully borne out, in that the observers committed the predicted systematic errors. These results are precise enough to allow the inference that illumination direction detection is based on second-order statistics--that is, of edge detector (rather than line detector) activity.
人类观察者能够相当精确地估计粗糙表面的光照方向。当表面粗糙时,光照会在粗糙度层面通过微分阴影产生可见的“纹理”,而在显著的全局表面曲率层面的微分光照则会导致更为常见的“阴影”。阴影被用于传统的从阴影恢复形状(SFS)算法中,这些算法忽略了光照纹理线索。由于这种简化,SFS算法通常被表述为全局问题(偏微分方程等)。然而,人类观察者可能会应用与这些传统SFS算法不同的方法。当粗糙度不是各向同性时,人们预期在光照方向的视觉检测中会出现系统误差,这可能会导致错误的形状估计。在这里,我们通过系统的心理物理学方法研究了光照方向检测作为粗糙度各向异性函数的情况,从而解决了这个问题。我们的预期得到了充分证实,因为观察者出现了预测的系统误差。这些结果足够精确,从而可以推断出光照方向检测是基于二阶统计量——也就是说,基于边缘检测器(而非线检测器)的活动。