Suppr超能文献

多尺度计算方法在传统及纳米颗粒口服给药系统合理设计中的作用。

The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems.

作者信息

Haddish-Berhane Nahor, Rickus Jenna L, Haghighi Kamyar

机构信息

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA.

出版信息

Int J Nanomedicine. 2007;2(3):315-31.

Abstract

Multiscale computational modeling of drug delivery systems (DDS) is poised to provide predictive capabilities for the rational design of targeted drug delivery systems, including multi-functional nanoparticles. Realistic, mechanistic models can provide a framework for understanding the fundamental physico-chemical interactions between drug, delivery system, and patient. Multiscale computational modeling, however, is in its infancy even for conventional drug delivery. The wide range of emerging nanotechnology systems for targeted delivery further increases the need for reliable in silico predictions. This review will present existing computational approaches at different scales in the design of traditional oral drug delivery systems. Subsequently, a multiscale framework for integrating continuum, stochastic, and computational chemistry models will be proposed and a case study will be presented for conventional DDS. The extension of this framework to emerging nanotechnology delivery systems will be discussed along with future directions. While oral delivery is the focus of the review, the outlined computational approaches can be applied to other drug delivery systems as well.

摘要

药物递送系统(DDS)的多尺度计算建模有望为包括多功能纳米颗粒在内的靶向药物递送系统的合理设计提供预测能力。现实的、基于机理的模型可以为理解药物、递送系统和患者之间的基本物理化学相互作用提供一个框架。然而,即使对于传统药物递送,多尺度计算建模也尚处于起步阶段。用于靶向递送的大量新兴纳米技术系统进一步增加了对可靠的计算机模拟预测的需求。本综述将介绍传统口服药物递送系统设计中不同尺度下的现有计算方法。随后,将提出一个整合连续介质、随机和计算化学模型的多尺度框架,并给出一个传统药物递送系统的案例研究。还将讨论该框架向新兴纳米技术递送系统的扩展以及未来方向。虽然口服递送是本综述的重点,但所概述的计算方法也可应用于其他药物递送系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8324/2676650/92ec465e0313/ijn-2-315f1.jpg

相似文献

2
Recent trends of nanomedicinal approaches in clinics.
Int J Pharm. 2018 Mar 1;538(1-2):263-278. doi: 10.1016/j.ijpharm.2018.01.016. Epub 2018 Jan 12.
3
Preface.
Curr Drug Deliv. 2016;13(1):3. doi: 10.2174/156720181301160314153150.
6
Predictive Design and Analysis of Drug Transport by Multiscale Computational Models Under Uncertainty.
Pharm Res. 2023 Feb;40(2):501-523. doi: 10.1007/s11095-022-03298-8. Epub 2022 Jun 1.
7
Nanostructure-mediated drug delivery.
Nanomedicine. 2005 Mar;1(1):22-30. doi: 10.1016/j.nano.2004.11.009.
9
Bioinspired Platform Conjugated Active Drug Delivery.
Curr Drug Targets. 2018 Feb 19;19(4):328-338. doi: 10.2174/1389450117666160602202850.
10
Oral delivery of poorly soluble compounds by supersaturated systems.
Ther Deliv. 2011 Jun;2(6):685-90. doi: 10.4155/tde.11.49.

引用本文的文献

1
Machine learning enabled multiscale model for nanoparticle margination and physiology based pharmacokinetics.
Comput Chem Eng. 2025 Jul;198. doi: 10.1016/j.compchemeng.2025.109081. Epub 2025 Mar 9.
2
Rational nanoparticle design: Optimization using insights from experiments and mathematical models.
J Control Release. 2023 Aug;360:772-783. doi: 10.1016/j.jconrel.2023.07.018. Epub 2023 Jul 22.
3
The Role of Research in Developing Nanoparticle-Based Therapeutics.
Front Digit Health. 2022 Mar 16;4:838590. doi: 10.3389/fdgth.2022.838590. eCollection 2022.
4
Computational Modeling of Drug Dissolution in the Human Stomach.
Front Physiol. 2022 Jan 10;12:755997. doi: 10.3389/fphys.2021.755997. eCollection 2021.
6
Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery.
Front Mol Biosci. 2020 Nov 25;7:604770. doi: 10.3389/fmolb.2020.604770. eCollection 2020.
7
Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Sep;12(5):e1628. doi: 10.1002/wnan.1628. Epub 2020 Apr 21.
8
A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques.
Eur Biophys J. 2018 Jul;47(5):561-571. doi: 10.1007/s00249-018-1278-2. Epub 2018 Jan 29.
9
A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs.
R Soc Open Sci. 2016 Sep 14;3(9):160287. doi: 10.1098/rsos.160287. eCollection 2016 Sep.
10
Design of Nanoparticle-Based Carriers for Targeted Drug Delivery.
J Nanomater. 2016;2016. doi: 10.1155/2016/1087250.

本文引用的文献

1
Welcome to the international journey to improving human health.
Int J Nanomedicine. 2006;1(1):1-2. doi: 10.2147/nano.2006.1.1.1.
2
Biological variability and targeted delivery of therapeutics for inflammatory bowel diseases: an in silico approach.
Inflamm Allergy Drug Targets. 2007 Mar;6(1):47-55. doi: 10.2174/187152807780077264.
3
Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.
Nanomedicine. 2005 Jun;1(2):101-9. doi: 10.1016/j.nano.2005.03.002.
4
Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.
Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6315-20. doi: 10.1073/pnas.0601755103. Epub 2006 Apr 10.
5
Viral nanoparticles as tools for intravital vascular imaging.
Nat Med. 2006 Mar;12(3):354-60. doi: 10.1038/nm1368. Epub 2006 Feb 26.
6
Challenges in the transition to model-based development.
AAPS J. 2005 Oct 5;7(2):E488-95. doi: 10.1208/aapsj070249.
7
Polymeric nanoparticle preparation that eradicates tumors.
Nano Lett. 2005 Dec;5(12):2552-6. doi: 10.1021/nl0519229.
8
Transepithelial and endothelial transport of poly (amidoamine) dendrimers.
Adv Drug Deliv Rev. 2005 Dec 14;57(15):2163-76. doi: 10.1016/j.addr.2005.09.013. Epub 2005 Nov 11.
9
A multi-scale stochastic drug release model for polymer-coated targeted drug delivery systems.
J Control Release. 2006 Jan 10;110(2):314-322. doi: 10.1016/j.jconrel.2005.09.046. Epub 2005 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验