Suppr超能文献

理性纳米粒子设计:从实验和数学模型中获得的见解进行优化。

Rational nanoparticle design: Optimization using insights from experiments and mathematical models.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.

出版信息

J Control Release. 2023 Aug;360:772-783. doi: 10.1016/j.jconrel.2023.07.018. Epub 2023 Jul 22.

Abstract

Polymeric nanoparticles are highly tunable drug delivery systems that show promise in targeting therapeutics to specific sites within the body. Rational nanoparticle design can make use of mathematical models to organize and extend experimental data, allowing for optimization of nanoparticles for particular drug delivery applications. While rational nanoparticle design is attractive from the standpoint of improving therapy and reducing unnecessary experiments, it has yet to be fully realized. The difficulty lies in the complexity of nanoparticle structure and behavior, which is added to the complexity of the physiological mechanisms involved in nanoparticle distribution throughout the body. In this review, we discuss the most important aspects of rational design of polymeric nanoparticles. Ultimately, we conclude that many experimental datasets are required to fully model polymeric nanoparticle behavior at multiple scales. Further, we suggest ways to consider the limitations and uncertainty of experimental data in creating nanoparticle design optimization schema, which we call quantitative nanoparticle design frameworks.

摘要

高分子纳米粒是一种高度可调的药物输送系统,在将治疗药物靶向递送到体内特定部位方面显示出巨大的应用潜力。合理的纳米粒设计可以利用数学模型来组织和扩展实验数据,从而优化纳米粒用于特定药物输送应用。虽然从改善治疗效果和减少不必要的实验的角度来看,合理的纳米粒设计具有吸引力,但它尚未得到充分实现。困难在于纳米粒结构和行为的复杂性,这增加了涉及纳米粒在体内分布的生理机制的复杂性。在这篇综述中,我们讨论了高分子纳米粒合理设计的最重要方面。最终,我们得出结论,需要大量的实验数据集来充分模拟高分子纳米粒在多个尺度上的行为。此外,我们还提出了在创建纳米粒设计优化方案时考虑实验数据的局限性和不确定性的方法,我们称之为定量纳米粒设计框架。

相似文献

本文引用的文献

5
A proposed mathematical description of in vivo nanoparticle delivery.体内纳米颗粒递呈的一种数学描述方法。
Adv Drug Deliv Rev. 2022 Oct;189:114520. doi: 10.1016/j.addr.2022.114520. Epub 2022 Aug 27.
10
Evolution of drug delivery systems: From 1950 to 2020 and beyond.药物传递系统的演变:从 1950 年到 2020 年及以后。
J Control Release. 2022 Feb;342:53-65. doi: 10.1016/j.jconrel.2021.12.030. Epub 2021 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验