Mikhno Arthur, Zanderigo Francesca, Naganawa Mika, Laine Andrew F, Parsey Ramin V
Columbia University, NY 10027, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5987-90. doi: 10.1109/EMBC.2012.6347358.
Absolute quantification of positron emission tomography (PET) data requires invasive blood sampling in order to obtain the arterial input function (AIF). This procedure involves considerable costs and risks. A less invasive approach is to estimate the AIF directly from images, known as an image derived input function (IDIF). One promising method, EPICA, extracts IDIF by applying independent components analysis (ICA) on dynamic PET data from the entire brain. EPICA requires exclusion of non-brain voxels from the PET images, which is achieved by using a brain mask prior to ICA. Including the entire brain in the mask may degrade the performance of ICA due to noise, artifacts and confounding information. We applied EPICA to 3 [(18)F]FDG and 3 [(11)C]WAY data sets and investigated if altering the brain mask by including or excluding tissue structures improves EPICA performance. EPICA applied to whole brain data yields poor performance but with the appropriate brain mask IDIF curves approximate the AIF well. Different tissue structures are important for different radiotracers suggesting that the kinetics of the radiotracer and its diffusion characteristics in the brain influence IDIF estimation with ICA.
正电子发射断层扫描(PET)数据的绝对定量需要进行有创性的血液采样,以获取动脉输入函数(AIF)。此过程涉及相当高的成本和风险。一种侵入性较小的方法是直接从图像中估计AIF,即所谓的图像衍生输入函数(IDIF)。一种有前景的方法EPICA,通过对来自整个大脑的动态PET数据应用独立成分分析(ICA)来提取IDIF。EPICA需要从PET图像中排除非脑体素,这是通过在ICA之前使用脑掩码来实现的。由于噪声、伪影和混杂信息,在掩码中包含整个大脑可能会降低ICA的性能。我们将EPICA应用于3个[(18)F]FDG和3个[(11)C]WAY数据集,并研究通过包含或排除组织结构来改变脑掩码是否能提高EPICA的性能。将EPICA应用于全脑数据时性能较差,但使用合适的脑掩码时,IDIF曲线能很好地近似AIF。不同的组织结构对不同的放射性示踪剂很重要,这表明放射性示踪剂的动力学及其在大脑中的扩散特性会影响使用ICA进行的IDIF估计。