Suppr超能文献

复制性DNA聚合酶对尿嘧啶的识别仅限于古细菌,在细菌和真核生物中不会发生。

Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.

作者信息

Wardle Josephine, Burgers Peter M J, Cann Isaac K O, Darley Kate, Heslop Pauline, Johansson Erik, Lin Li-Jung, McGlynn Peter, Sanvoisin Jonathan, Stith Carrie M, Connolly Bernard A

机构信息

Institute for Cell and Molecular Biosciences (ICaMB), University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.

出版信息

Nucleic Acids Res. 2008 Feb;36(3):705-11. doi: 10.1093/nar/gkm1023. Epub 2007 Nov 21.

Abstract

Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.

摘要

来自诸如嗜热栖热菌等古菌的B族DNA聚合酶,它们生活在约100摄氏度的温度下,能特异性识别DNA模板中的尿嘧啶,并因这种碱基而使复制停滞。本文证明,与尿嘧啶的相互作用并不局限于嗜热古菌,嗜温的嗜乙酰甲烷八叠球菌的聚合酶也表现出相同行为。B族DNA聚合酶复制古菌的基因组,古菌是生命的三个基本域之一。该出版物还进一步表明,来自其他两个域的DNA复制聚合酶,即细菌(聚合酶III)和真核生物(核DNA的聚合酶δ和ε以及线粒体的聚合酶γ)也无法识别尿嘧啶。尿嘧啶在DNA中出现是由于胞嘧啶脱氨,无论是在G:C碱基对中,还是更快速地在例如复制过程中产生的单链区域中。由此产生的G:U错配/单链尿嘧啶具有致突变性,除非被修复,否则会在50%的子代中导致G:C到A:T的转变。本文根据消除尿嘧啶所需的DNA修复途径,讨论了将尿嘧啶识别局限于古菌域聚合酶的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d35d/2241895/cee0e4f2d934/gkm1023f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验