Du Xiangjun, Wang Zhuo, Wu Aiping, Song Lin, Cao Yang, Hang Haiying, Jiang Taijiao
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
Genome Res. 2008 Jan;18(1):178-87. doi: 10.1101/gr.6969007. Epub 2007 Nov 21.
The recent availability of full genomic sequence data for a large number of human influenza A (H3N2) virus isolates over many years provides us an opportunity to analyze human influenza virus evolution by considering all gene segments simultaneously. However, such analysis requires development of new computational models that can capture the complex evolutionary features over the entire genome. By analyzing nucleotide co-occurrence over the entire genome of human H3N2 viruses, we have developed a network model to describe H3N2 virus evolutionary patterns and dynamics. The network model effectively captures the evolutionary antigenic features of H3N2 virus at the whole-genome level and accurately describes the complex evolutionary patterns between individual gene segments. Our analyses show that the co-occurring nucleotide modules apparently underpin the dynamics of human H3N2 evolution and that amino acid substitutions corresponding to nucleotide co-changes cluster preferentially in known antigenic regions of the viral HA. Therefore, our study demonstrates that nucleotide co-occurrence networks represent a powerful method for tracking influenza A virus evolution and that cooperative genomic interaction is a major force underlying influenza virus evolution.
近年来,多年来大量人类甲型流感(H3N2)病毒分离株的全基因组序列数据可供使用,这为我们提供了一个机会,通过同时考虑所有基因片段来分析人类流感病毒的进化。然而,这种分析需要开发新的计算模型,以捕捉整个基因组的复杂进化特征。通过分析人类H3N2病毒全基因组中的核苷酸共现情况,我们开发了一种网络模型来描述H3N2病毒的进化模式和动态。该网络模型有效地捕捉了H3N2病毒在全基因组水平上的进化抗原特征,并准确描述了各个基因片段之间的复杂进化模式。我们的分析表明,共现的核苷酸模块显然是人类H3N2进化动态的基础,并且与核苷酸共同变化相对应的氨基酸替换优先聚集在病毒HA的已知抗原区域。因此,我们的研究表明,核苷酸共现网络是追踪甲型流感病毒进化的有力方法,并且协同基因组相互作用是流感病毒进化的主要驱动力。