Chen Zhuoying, Moore Jenny, Radtke Guillaume, Sirringhaus Henning, O'Brien Stephen
Department of Applied Physics & Applied Mathematics, Columbia University, 200 SW Mudd Building, 500 W 120th Street, New York, New York 10027, USA.
J Am Chem Soc. 2007 Dec 19;129(50):15702-9. doi: 10.1021/ja076698z. Epub 2007 Nov 23.
We report binary nanoparticle superlattices obtained by self-assembly of two different semiconductor quantum dots. Such a system is a means to include two discretized, quantum-confined, and complimentary semiconductor units in close proximity, for purposes of band gap matching and/or energy transfer. From a range of possible structures predicted, we observe an exclusive preference for the formation of Cuboctahedral AB13 and AB5 (isostructural with CaCu5) obtained in the system of 8.1 nm CdTe and 4.4 nm CdSe nanoparticles. For this system, a possible ionic origin for the formation of structures with lower packing densities was ruled out on the basis of electrophoretic mobility measurements. To understand further the principles of superlattice formation, we constructed space-filling curves for binary component hard spheres over the full range of radius ratio. In addition, the pair interaction energies due to core-core and ligand-ligand van der Waals (VDW) forces are estimated. The real structures are believed to form under a combined influence of entropic driving forces (following hard-sphere space filling principles) and the surface (due to ligand-ligand VDW).
我们报道了通过两种不同半导体量子点的自组装获得的二元纳米粒子超晶格。这样的系统是一种将两个离散的、量子受限的且互补的半导体单元紧密结合在一起的方法,用于带隙匹配和/或能量转移。从一系列预测的可能结构中,我们观察到在8.1纳米碲化镉和4.4纳米硒化镉纳米粒子系统中,形成立方八面体AB13和AB5(与CaCu5同构)具有排他性偏好。对于该系统,基于电泳迁移率测量排除了形成具有较低堆积密度结构的可能离子起源。为了进一步理解超晶格形成的原理,我们构建了二元组分硬球在整个半径比范围内的空间填充曲线。此外,还估计了由于核 - 核和配体 - 配体范德华(VDW)力引起的对相互作用能。据信实际结构是在熵驱动力(遵循硬球空间填充原理)和表面(由于配体 - 配体VDW)的共同影响下形成的。