Shevchenko Elena V, Talapin Dmitri V, Kotov Nicholas A, O'Brien Stephen, Murray Christopher B
IBM Research Division, T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA.
Nature. 2006 Jan 5;439(7072):55-9. doi: 10.1038/nature04414.
Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures--that is, 'bottom up' assembly--is a theme that runs through chemistry, biology and material science. Bacteria, macromolecules and nanoparticles can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation, and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres. Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.
将原子、分子和纳米粒子等小的构建单元组装成宏观结构,即“自下而上”组装,是贯穿化学、生物学和材料科学的一个主题。细菌、大分子和纳米粒子能够自组装,生成具有精确性的有序结构,这种精确性对当前的光刻技术构成了挑战。将两种不同材料的纳米粒子组装成二元纳米粒子超晶格(BNSL),可以为制备具有精确控制的化学成分和紧密排列的组分的各种材料(超材料)提供一条通用且廉价的途径。纳米粒子堆积密度的最大化已被认为是BNSL形成的驱动力,并且据预测只有少数BNSL结构是热力学稳定的。最近,由带相反电荷的聚甲基丙烯酸甲酯球体生长出了具有微米级晶格间距的胶体晶体。在此,我们展示了使用半导体、金属和磁性纳米粒子构建单元的组合形成了15种以上不同的BNSL结构。其中至少有十种胶体晶体结构此前未曾报道过。我们证明,空间稳定化纳米粒子上的电荷决定了BNSL的化学计量;熵、范德华力、空间位阻和偶极力的额外作用稳定了各种BNSL结构。