Suppr超能文献

金属纳米晶体的形状控制合成:简单化学与复杂物理相遇?

Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?

作者信息

Xia Younan, Xiong Yujie, Lim Byungkwon, Skrabalak Sara E

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130-4899, USA.

出版信息

Angew Chem Int Ed Engl. 2009;48(1):60-103. doi: 10.1002/anie.200802248.

Abstract

Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

摘要

纳米晶体是现代科学技术的基础。掌握纳米晶体的形状能够控制其性质,并增强其在特定应用中的实用性。我们的目的是对当前围绕金属纳米晶体形状控制合成的研究活动进行全面综述。我们首先在金属纳米晶体合成的背景下简要介绍成核和生长,接着讨论金属纳米晶体在不同条件下可能呈现的形状。然后,我们聚焦于为了在溶液相合成中操控金属纳米晶体的成核和生长以生成特定形状而探索的各种实验参数。接着,我们通过选择一些例子来详细阐述这些方法,在这些例子中,对于所观察到的形状控制已经有了合理的理解,或者至少这些方案已被证明是可重复和可控的。最后,我们重点介绍一些通过金属纳米晶体形状控制合成得以实现和/或增强的应用。我们以对该领域未来研究方向的个人观点来结束本文。

相似文献

5
Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis.用于多相催化的形状可控金属纳米晶体
Annu Rev Chem Biomol Eng. 2016 Jun 7;7:327-48. doi: 10.1146/annurev-chembioeng-080615-034503. Epub 2016 Mar 25.
6
Seed-Mediated Growth of Colloidal Metal Nanocrystals.胶体金属纳米晶的种子介导生长。
Angew Chem Int Ed Engl. 2017 Jan 2;56(1):60-95. doi: 10.1002/anie.201604731. Epub 2016 Dec 14.
9
Noble-metal nanocrystals with concave surfaces: synthesis and applications.具有凹面的贵金属纳米晶体:合成与应用。
Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7656-73. doi: 10.1002/anie.201201557. Epub 2012 May 25.

引用本文的文献

5
High-Yield Growth of Supported Gold Nanorods in Microfluidic Channels.微流控通道中负载型金纳米棒的高产率生长。
ACS Nano. 2025 Aug 19;19(32):29691-29701. doi: 10.1021/acsnano.5c09672. Epub 2025 Aug 8.
7
Large-Area Monocrystalline Copper Microflake Synthesis.大面积单晶铜微片的合成
J Phys Chem C Nanomater Interfaces. 2025 Jun 16;129(25):11574-11582. doi: 10.1021/acs.jpcc.5c00654. eCollection 2025 Jun 26.

本文引用的文献

1
A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt.一种用于钴新晶体结构的溶液相化学方法。
Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1788-1791. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1788::AID-ANIE1788>3.0.CO;2-2.
4
Growth of rodlike silver nanoparticles by vapor deposition of small clusters.通过小团簇的气相沉积生长棒状银纳米粒子。
Chemphyschem. 2000 Nov 3;1(3):140-2. doi: 10.1002/1439-7641(20001103)1:3<140::AID-CPHC140>3.0.CO;2-L.
6
Aligned silver nanorod arrays for surface-enhanced Raman scattering.用于表面增强拉曼散射的排列银纳米棒阵列
Nanotechnology. 2006 May 28;17(10):2670-4. doi: 10.1088/0957-4484/17/10/038. Epub 2006 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验