Su Zhenwei, Zhou Xinliang, Haynes W John, Loukin Stephen H, Anishkin Andriy, Saimi Yoshiro, Kung Ching
Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, Madison, WI 53706, USA.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19607-12. doi: 10.1073/pnas.0708584104. Epub 2007 Nov 27.
Transient receptor potential (TRP) channels found in animals, protists, and fungi are primary chemo-, thermo-, or mechanosensors. Current research emphasizes the characteristics of individual channels in each animal TRP subfamily but not the mechanisms common across subfamilies. A forward genetic screen of the TrpY1, the yeast TRP channel, recovered gain-of-function (GOF) mutations with phenotype in vivo and in vitro. Single-channel patch-clamp analyses of these GOF-mutant channels show prominent aberrations in open probability and channel kinetics. These mutations revealed functionally important aromatic amino acid residues in four locations: at the intracellular end of the fifth transmembrane helix (TM5), at both ends of TM6, and at the immediate extension of TM6. These aromatics have counterparts in most TRP subfamilies. The one in TM5 (F380L) aligns precisely with an exceptional Drosophila mutant allele (F550I) that causes constitutive activity in the canonical TRP channel, resulting in rapid and severe retinal degeneration beyond mere loss of phototaxis. Thus, this phenylalanine maintains the balance of various functional states (conformations) of a channel for insect phototransduction as well as one for fungal mechanotransduction. This residue is among a small cluster of phenylalanines found in all known subfamilies of TRP channels. This unique case illustrates that GOF mutations can reveal structure-function principles that can be generalized across different TRP subfamilies. It appears that the conserved aromatics in the four locations have conserved functions in most TRP channels. The possible mechanistic roles of these aromatics and the further use of yeast genetics to dissect TRP channels are discussed.
在动物、原生生物和真菌中发现的瞬时受体电位(TRP)通道是主要的化学、热或机械传感器。当前的研究强调每个动物TRP亚家族中单个通道的特性,而非亚家族间共有的机制。对酵母TRP通道TrpY1进行正向遗传学筛选,获得了在体内和体外均有表型的功能获得性(GOF)突变。对这些GOF突变通道进行单通道膜片钳分析,结果显示开放概率和通道动力学存在显著异常。这些突变揭示了四个位置上功能重要的芳香族氨基酸残基:位于第五个跨膜螺旋(TM5)的细胞内末端、TM6的两端以及TM6的紧邻延伸处。这些芳香族氨基酸在大多数TRP亚家族中都有对应物。TM5中的一个(F380L)与果蝇的一个特殊突变等位基因(F550I)精确对齐,该等位基因在典型TRP通道中导致组成型活性,除了单纯丧失趋光性外,还会导致快速且严重的视网膜退化。因此,这个苯丙氨酸维持了昆虫光转导通道以及真菌机械转导通道各种功能状态(构象)的平衡。这个残基位于TRP通道所有已知亚家族中发现的一小簇苯丙氨酸之中。这个独特案例表明,GOF突变可以揭示可在不同TRP亚家族中推广的结构 - 功能原理。看来这四个位置上保守的芳香族氨基酸在大多数TRP通道中具有保守功能。本文讨论了这些芳香族氨基酸可能的作用机制以及进一步利用酵母遗传学剖析TRP通道的方法。