Suppr超能文献

酵母功能获得性突变揭示了瞬时受体电位通道不同亚家族间保守的结构-功能关系。

Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels.

作者信息

Su Zhenwei, Zhou Xinliang, Haynes W John, Loukin Stephen H, Anishkin Andriy, Saimi Yoshiro, Kung Ching

机构信息

Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19607-12. doi: 10.1073/pnas.0708584104. Epub 2007 Nov 27.

Abstract

Transient receptor potential (TRP) channels found in animals, protists, and fungi are primary chemo-, thermo-, or mechanosensors. Current research emphasizes the characteristics of individual channels in each animal TRP subfamily but not the mechanisms common across subfamilies. A forward genetic screen of the TrpY1, the yeast TRP channel, recovered gain-of-function (GOF) mutations with phenotype in vivo and in vitro. Single-channel patch-clamp analyses of these GOF-mutant channels show prominent aberrations in open probability and channel kinetics. These mutations revealed functionally important aromatic amino acid residues in four locations: at the intracellular end of the fifth transmembrane helix (TM5), at both ends of TM6, and at the immediate extension of TM6. These aromatics have counterparts in most TRP subfamilies. The one in TM5 (F380L) aligns precisely with an exceptional Drosophila mutant allele (F550I) that causes constitutive activity in the canonical TRP channel, resulting in rapid and severe retinal degeneration beyond mere loss of phototaxis. Thus, this phenylalanine maintains the balance of various functional states (conformations) of a channel for insect phototransduction as well as one for fungal mechanotransduction. This residue is among a small cluster of phenylalanines found in all known subfamilies of TRP channels. This unique case illustrates that GOF mutations can reveal structure-function principles that can be generalized across different TRP subfamilies. It appears that the conserved aromatics in the four locations have conserved functions in most TRP channels. The possible mechanistic roles of these aromatics and the further use of yeast genetics to dissect TRP channels are discussed.

摘要

在动物、原生生物和真菌中发现的瞬时受体电位(TRP)通道是主要的化学、热或机械传感器。当前的研究强调每个动物TRP亚家族中单个通道的特性,而非亚家族间共有的机制。对酵母TRP通道TrpY1进行正向遗传学筛选,获得了在体内和体外均有表型的功能获得性(GOF)突变。对这些GOF突变通道进行单通道膜片钳分析,结果显示开放概率和通道动力学存在显著异常。这些突变揭示了四个位置上功能重要的芳香族氨基酸残基:位于第五个跨膜螺旋(TM5)的细胞内末端、TM6的两端以及TM6的紧邻延伸处。这些芳香族氨基酸在大多数TRP亚家族中都有对应物。TM5中的一个(F380L)与果蝇的一个特殊突变等位基因(F550I)精确对齐,该等位基因在典型TRP通道中导致组成型活性,除了单纯丧失趋光性外,还会导致快速且严重的视网膜退化。因此,这个苯丙氨酸维持了昆虫光转导通道以及真菌机械转导通道各种功能状态(构象)的平衡。这个残基位于TRP通道所有已知亚家族中发现的一小簇苯丙氨酸之中。这个独特案例表明,GOF突变可以揭示可在不同TRP亚家族中推广的结构 - 功能原理。看来这四个位置上保守的芳香族氨基酸在大多数TRP通道中具有保守功能。本文讨论了这些芳香族氨基酸可能的作用机制以及进一步利用酵母遗传学剖析TRP通道的方法。

相似文献

1
Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19607-12. doi: 10.1073/pnas.0708584104. Epub 2007 Nov 27.
2
Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15555-9. doi: 10.1073/pnas.0704039104. Epub 2007 Sep 18.
3
The TRP superfamily of cation channels.
Sci STKE. 2005 Feb 22;2005(272):re3. doi: 10.1126/stke.2722005re3.
4
Physiology, phylogeny, and functions of the TRP superfamily of cation channels.
Sci STKE. 2001 Jul 10;2001(90):re1. doi: 10.1126/stke.2001.90.re1.
5
Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids.
Naunyn Schmiedebergs Arch Pharmacol. 2018 Aug;391(8):833-846. doi: 10.1007/s00210-018-1507-3. Epub 2018 May 8.
7
The S4---S5 linker - gearbox of TRP channel gating.
Cell Calcium. 2017 Nov;67:156-165. doi: 10.1016/j.ceca.2017.04.002. Epub 2017 Apr 4.
8
A competing hydrophobic tug on L596 to the membrane core unlatches S4-S5 linker elbow from TRP helix and allows TRPV4 channel to open.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11847-11852. doi: 10.1073/pnas.1613523113. Epub 2016 Oct 3.
10
Sequence and structural conservation reveal fingerprint residues in TRP channels.
Elife. 2022 Jun 10;11:e73645. doi: 10.7554/eLife.73645.

引用本文的文献

1
Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium.
Structure. 2022 Jan 6;30(1):139-155.e5. doi: 10.1016/j.str.2021.08.003. Epub 2021 Aug 27.
2
Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2363-72. doi: 10.1073/pnas.1517066113. Epub 2016 Apr 11.
3
Novel Alleles of gon-2, a C. elegans Ortholog of Mammalian TRPM6 and TRPM7, Obtained by Genetic Reversion Screens.
PLoS One. 2015 Nov 25;10(11):e0143445. doi: 10.1371/journal.pone.0143445. eCollection 2015.
4
Modeling Suggests TRPC3 Hydrogen Bonding and Not Phosphorylation Contributes to the Ataxia Phenotype of the Moonwalker Mouse.
Biochemistry. 2015 Jul 7;54(26):4033-41. doi: 10.1021/acs.biochem.5b00235. Epub 2015 Jun 26.
5
Comparative sequence analysis suggests a conserved gating mechanism for TRP channels.
J Gen Physiol. 2015 Jul;146(1):37-50. doi: 10.1085/jgp.201411329. Epub 2015 Jun 15.
6
Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death.
J Neurosci. 2014 Apr 23;34(17):5738-46. doi: 10.1523/JNEUROSCI.4540-13.2014.
7
Conserved gating elements in TRPC4 and TRPC5 channels.
J Biol Chem. 2013 Jul 5;288(27):19471-83. doi: 10.1074/jbc.M113.478305. Epub 2013 May 15.
8
Molecular bases of multimodal regulation of a fungal transient receptor potential (TRP) channel.
J Biol Chem. 2013 May 24;288(21):15303-17. doi: 10.1074/jbc.M112.434795. Epub 2013 Apr 3.
9
Chimeras reveal a single lipid-interface residue that controls MscL channel kinetics as well as mechanosensitivity.
Cell Rep. 2013 Feb 21;3(2):520-7. doi: 10.1016/j.celrep.2013.01.018. Epub 2013 Feb 14.
10
The core domain as the force sensor of the yeast mechanosensitive TRP channel.
J Gen Physiol. 2011 Dec;138(6):627-40. doi: 10.1085/jgp.201110693.

本文引用的文献

1
Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15555-9. doi: 10.1073/pnas.0704039104. Epub 2007 Sep 18.
2
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J. 2007 Sep 5;26(17):4005-15. doi: 10.1038/sj.emboj.7601828. Epub 2007 Aug 16.
3
Molecular mechanisms of conduction and selectivity in aquaporin water channels.
J Nutr. 2007 Jun;137(6 Suppl 1):1509S-1515S; discussion 1516S-1517S. doi: 10.1093/jn/137.6.1509S.
4
Electrostatic contributions to indole-lipid interactions.
J Phys Chem B. 2005 Jul 7;109(26):13014-23. doi: 10.1021/jp0511000.
5
An introduction to TRP channels.
Annu Rev Physiol. 2006;68:619-47. doi: 10.1146/annurev.physiol.68.040204.100431.
7
Role of aromatic localization in the gating process of a potassium channel.
Biophys J. 2006 Jan 1;90(1):L01-3. doi: 10.1529/biophysj.105.072116. Epub 2005 Sep 16.
8
Voltage sensor of Kv1.2: structural basis of electromechanical coupling.
Science. 2005 Aug 5;309(5736):903-8. doi: 10.1126/science.1116270. Epub 2005 Jul 7.
9
Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones.
Nature. 2005 Apr 14;434(7035):898-904. doi: 10.1038/nature03478. Epub 2005 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验