Péchaud Mickaël, Keriven Renaud, Papadopoulo Théo, Badier Jean-Michel
Odyssée Lab, Ecole Normale Supérieure, Ecole des Ponts, INRIA, 45, rue d'Ulm - 75005 Paris, France.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):793-800. doi: 10.1007/978-3-540-75759-7_96.
An important issue in electroencephalographiy (EEG) experiments is to measure accurately the three dimensional (3D) positions of the electrodes. We propose a system where these positions are automatically estimated from several images using computer vision techniques. Yet, only a set of undifferentiated points are recovered this way and remains the problem of labeling them, i.e. of finding which electrode corresponds to each point. This paper proposes a fast and robust solution to this latter problem based on combinatorial optimization. We design a specific energy that we minimize with a modified version of the Loopy Belief Propagation algorithm. Experiments on real data show that, with our method, a manual labeling of two or three electrodes only is sufficient to get the complete labeling of a 64 electrodes cap in less than 10 seconds.
脑电图(EEG)实验中的一个重要问题是精确测量电极的三维(3D)位置。我们提出了一种系统,该系统使用计算机视觉技术从几张图像中自动估计这些位置。然而,通过这种方式仅能恢复一组无差别的点,并且仍然存在给这些点进行标记的问题,即确定每个点对应哪个电极。本文基于组合优化提出了一种针对后一个问题的快速且稳健的解决方案。我们设计了一种特定的能量,并使用循环信念传播算法的改进版本将其最小化。对真实数据的实验表明,使用我们的方法,仅手动标记两三个电极就足以在不到10秒的时间内完成对64电极帽的完整标记。