Corso Jason J, Yuille Alan, Sicotte Nancy L, Toga Arthur
Center for Computational Biology, Laboratory of Neuro Imaging, University of California, Los Angeles, USA.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):985-93. doi: 10.1007/978-3-540-75757-3_119.
We propose an extended graph-shifts algorithm for image segmentation and labeling. This algorithm performs energy minimization by manipulating a dynamic hierarchical representation of the image. It consists of a set of moves occurring at different levels of the hierarchy where the types of move, and the level of the hierarchy, are chosen automatically so as to maximally decrease the energy. Extended graph-shifts can be applied to a broad range of problems in medical imaging. In this paper, we apply extended graph-shifts to the detection of pathological brain structures: (i) segmentation of brain tumors, and (ii) detection of multiple sclerosis lesions. The energy terms in these tasks are learned from training data by statistical learning algorithms. We demonstrate accurate results, precision and recall in the order of 93%, and also show that the algorithm is computationally efficient, segmenting a full 3D volume in about one minute.
我们提出了一种用于图像分割和标注的扩展图移位算法。该算法通过操纵图像的动态层次表示来实现能量最小化。它由一组在层次结构不同级别发生的移动组成,其中移动类型和层次级别会自动选择,以最大程度地降低能量。扩展图移位可应用于医学成像中的广泛问题。在本文中,我们将扩展图移位应用于病理性脑结构的检测:(i)脑肿瘤分割,以及(ii)多发性硬化病变检测。这些任务中的能量项通过统计学习算法从训练数据中学习得到。我们展示了精确的结果,精确率和召回率约为93%,并且还表明该算法计算效率高,大约一分钟就能分割一个完整的3D体积。