Corso Jason J, Tu Zhuowen, Yuille Alan, Toga Arthur
Center for Computational Biology, Laboratory of Neuro Imaging, University of California, Los Angeles, USA.
Inf Process Med Imaging. 2007;20:183-97. doi: 10.1007/978-3-540-73273-0_16.
We propose a novel algorithm called graph-shifts for performing image segmentation and labeling. This algorithm makes use of a dynamic hierarchical representation of the image. This representation allows each iteration of the algorithm to make both small and large changes in the segmentation, similar to PDE and split-and-merge methods, respectively. In particular, at each iteration we are able to rapidly compute and select the optimal change to be performed. We apply graph-shifts to the task of segmenting sub-cortical brain structures. First we formalize this task as energy function minimization where the energy terms are learned from a training set of labeled images. Then we apply the graphshifts algorithm. We show that the labeling results are comparable in quantitative accuracy to other approaches but are obtained considerably faster: by orders of magnitude (roughly one minute). We also quantitatively demonstrate robustness to initialization and avoidance of local minima in which conventional boundary PDE methods fall.
我们提出了一种名为图移位的新颖算法,用于执行图像分割和标记。该算法利用图像的动态分层表示。这种表示允许算法的每次迭代在分割中分别进行类似于偏微分方程(PDE)方法的小变化和类似于分裂合并方法的大变化。特别是,在每次迭代中,我们能够快速计算并选择要执行的最佳变化。我们将图移位应用于分割皮质下脑结构的任务。首先,我们将此任务形式化为能量函数最小化,其中能量项是从带标记图像的训练集中学习得到的。然后我们应用图移位算法。我们表明,标记结果在定量准确性方面与其他方法相当,但获得速度要快得多:快几个数量级(大约一分钟)。我们还定量证明了其对初始化的鲁棒性以及避免了传统边界PDE方法所陷入的局部最小值。