Suppr超能文献

基于图移位算法的皮质下结构分割

Segmentation of sub-cortical structures by the graph-shifts algorithm.

作者信息

Corso Jason J, Tu Zhuowen, Yuille Alan, Toga Arthur

机构信息

Center for Computational Biology, Laboratory of Neuro Imaging, University of California, Los Angeles, USA.

出版信息

Inf Process Med Imaging. 2007;20:183-97. doi: 10.1007/978-3-540-73273-0_16.

Abstract

We propose a novel algorithm called graph-shifts for performing image segmentation and labeling. This algorithm makes use of a dynamic hierarchical representation of the image. This representation allows each iteration of the algorithm to make both small and large changes in the segmentation, similar to PDE and split-and-merge methods, respectively. In particular, at each iteration we are able to rapidly compute and select the optimal change to be performed. We apply graph-shifts to the task of segmenting sub-cortical brain structures. First we formalize this task as energy function minimization where the energy terms are learned from a training set of labeled images. Then we apply the graphshifts algorithm. We show that the labeling results are comparable in quantitative accuracy to other approaches but are obtained considerably faster: by orders of magnitude (roughly one minute). We also quantitatively demonstrate robustness to initialization and avoidance of local minima in which conventional boundary PDE methods fall.

摘要

我们提出了一种名为图移位的新颖算法,用于执行图像分割和标记。该算法利用图像的动态分层表示。这种表示允许算法的每次迭代在分割中分别进行类似于偏微分方程(PDE)方法的小变化和类似于分裂合并方法的大变化。特别是,在每次迭代中,我们能够快速计算并选择要执行的最佳变化。我们将图移位应用于分割皮质下脑结构的任务。首先,我们将此任务形式化为能量函数最小化,其中能量项是从带标记图像的训练集中学习得到的。然后我们应用图移位算法。我们表明,标记结果在定量准确性方面与其他方法相当,但获得速度要快得多:快几个数量级(大约一分钟)。我们还定量证明了其对初始化的鲁棒性以及避免了传统边界PDE方法所陷入的局部最小值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验