Mohamadi Mohamad Reza, Kaji Noritada, Tokeshi Manabu, Baba Yoshinobu
Department of Applied Chemistry, Graduate School of Engineering, Venture Business Laboratory (VBL), MEXT Innovative Research Center for Preventive Medical Engineering, Nagoya University, Nagoya 464-8603, Japan.
Anal Chem. 2008 Jan 1;80(1):312-6. doi: 10.1021/ac701974u. Epub 2007 Dec 6.
We report a dynamic cross-linking effect of Mg2+ that enhances the sieving properties of low-viscosity poly(vinylpyrrolidone) (PVP) solutions. A low-viscosity PVP solution was applied to nondenaturing microchip electrophoresis of protein samples using microchips made of poly(methyl methacrylate). The separation resolution of nondenatured protein markers in 1.8% PVP solution was improved by adding 1-20 mM MgCl2. We studied the effect of the ratio of cross-linking agent on mobility of protein samples and showed that protein retardation (ln micro/micro0) is correlated with the ratio of cross-linking agent to PVP ([cMg2+/cPVP]) as ln micro/micro0=A'[cMg2+/cPVP]b'. A' was related to the protein radius (R), and b' was found to be 0.72 for proteins with R=2.4 nm and 0.82 for proteins with R=1.85 nm. A structural study of PVP in semidilute solutions using dynamic light scattering showed that incremental increases of Mg2+ ion concentration from 5 to 20 mM in 1.8% PVP solution increased the hydrodynamic radius of PVP polymers by 20%.