Suppr超能文献

细胞骨架束力学

Cytoskeletal bundle mechanics.

作者信息

Bathe Mark, Heussinger Claus, Claessens Mireille M A E, Bausch Andreas R, Frey Erwin

机构信息

Arnold Sommerfeld Zentrum für Theoretische Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Biophys J. 2008 Apr 15;94(8):2955-64. doi: 10.1529/biophysj.107.119743. Epub 2007 Nov 30.

Abstract

The mechanical properties of cytoskeletal actin bundles play an essential role in numerous physiological processes, including hearing, fertilization, cell migration, and growth. Cells employ a multitude of actin-binding proteins to actively regulate bundle dimensions and cross-linking properties to suit biological function. The mechanical properties of actin bundles vary by orders of magnitude depending on diameter and length, cross-linking protein type and concentration, and constituent filament properties. Despite their importance to cell function, the molecular design principles responsible for this mechanical behavior remain unknown. Here, we examine the mechanics of cytoskeletal bundles using a molecular-based model that accounts for the discrete nature of constituent actin filaments and their distinct cross-linking proteins. A generic competition between filament stretching and cross-link shearing determines three markedly different regimes of mechanical response that are delineated by the relative values of two simple design parameters, revealing the universal nature of bundle-bending mechanics. In each regime, bundle-bending stiffness displays distinct scaling behavior with respect to bundle dimensions and molecular composition, as observed in reconstituted actin bundles in vitro. This mechanical behavior has direct implications on the physiological bending, buckling, and entropic stretching behavior of cytoskeletal processes, as well as reconstituted actin systems. Results are used to predict the bending regimes of various in vivo cytoskeletal bundles that are not easily accessible to experiment and to generate hypotheses regarding implications of the isolated behavior on in vivo bundle function.

摘要

细胞骨架肌动蛋白束的力学性质在众多生理过程中发挥着至关重要的作用,这些生理过程包括听力、受精、细胞迁移和生长。细胞利用多种肌动蛋白结合蛋白来积极调节束的尺寸和交联特性,以适应生物学功能。肌动蛋白束的力学性质根据直径和长度、交联蛋白类型和浓度以及组成细丝的性质而在多个数量级上变化。尽管它们对细胞功能很重要,但导致这种力学行为的分子设计原理仍然未知。在这里,我们使用基于分子的模型来研究细胞骨架束的力学,该模型考虑了组成肌动蛋白细丝及其不同交联蛋白的离散性质。细丝拉伸和交联剪切之间的一般竞争决定了三种明显不同的力学响应模式,这些模式由两个简单设计参数的相对值来界定,揭示了束弯曲力学的普遍性质。在每种模式下,束弯曲刚度相对于束尺寸和分子组成表现出不同的标度行为,这在体外重构的肌动蛋白束中也有观察到。这种力学行为对细胞骨架过程以及重构的肌动蛋白系统的生理弯曲、屈曲和熵拉伸行为有直接影响。研究结果用于预测各种体内细胞骨架束的弯曲模式,这些模式不易通过实验获得,并生成关于孤立行为对体内束功能影响的假设。

相似文献

1
Cytoskeletal bundle mechanics.
Biophys J. 2008 Apr 15;94(8):2955-64. doi: 10.1529/biophysj.107.119743. Epub 2007 Nov 30.
2
Actin-binding proteins sensitively mediate F-actin bundle stiffness.
Nat Mater. 2006 Sep;5(9):748-53. doi: 10.1038/nmat1718. Epub 2006 Aug 20.
3
Single Actin Bundle Rheology.
Molecules. 2017 Oct 24;22(10):1804. doi: 10.3390/molecules22101804.
4
Computational analysis of viscoelastic properties of crosslinked actin networks.
PLoS Comput Biol. 2009 Jul;5(7):e1000439. doi: 10.1371/journal.pcbi.1000439. Epub 2009 Jul 17.
5
Discontinuous unbinding transitions of filament bundles.
Phys Rev Lett. 2005 Jul 15;95(3):038102. doi: 10.1103/PhysRevLett.95.038102. Epub 2005 Jul 14.
6
Adaptive Response of Actin Bundles under Mechanical Stress.
Biophys J. 2017 Sep 5;113(5):1072-1079. doi: 10.1016/j.bpj.2017.07.017.
7
Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
Biomech Model Mechanobiol. 2015 Oct;14(5):1143-55. doi: 10.1007/s10237-015-0660-6. Epub 2015 Feb 24.
8
Filament rigidity and connectivity tune the deformation modes of active biopolymer networks.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10037-E10045. doi: 10.1073/pnas.1708625114. Epub 2017 Nov 7.
9
Form-finding model shows how cytoskeleton network stiffness is realized.
PLoS One. 2013 Oct 17;8(10):e77417. doi: 10.1371/journal.pone.0077417. eCollection 2013.
10
Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051913. doi: 10.1103/PhysRevE.77.051913. Epub 2008 May 16.

引用本文的文献

1
Mechanical properties of intercellular tunneling nanotubes formed by different mechanisms.
Heliyon. 2024 Aug 15;10(17):e36265. doi: 10.1016/j.heliyon.2024.e36265. eCollection 2024 Sep 15.
3
Clots reveal anomalous elastic behavior of fiber networks.
Sci Adv. 2024 Jan 12;10(2):eadh1265. doi: 10.1126/sciadv.adh1265. Epub 2024 Jan 10.
4
The actin cytoskeleton in hair bundle development and hearing loss.
Hear Res. 2023 Sep 1;436:108817. doi: 10.1016/j.heares.2023.108817. Epub 2023 May 26.
6
Marangoni effect and cell spreading.
Eur Biophys J. 2022 Sep;51(6):419-429. doi: 10.1007/s00249-022-01612-1. Epub 2022 Aug 5.
8
Regulation of Actin Bundle Mechanics and Structure by Intracellular Environmental Factors.
Front Phys. 2021 May;9. doi: 10.3389/fphy.2021.675885. Epub 2021 May 27.
9
10
Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study.
Biophys J. 2021 Sep 7;120(17):3697-3708. doi: 10.1016/j.bpj.2021.07.019. Epub 2021 Jul 24.

本文引用的文献

2
Chirality and equilibrium biopolymer bundles.
Phys Rev Lett. 2007 Aug 31;99(9):098101. doi: 10.1103/PhysRevLett.99.098101. Epub 2007 Aug 28.
3
Mechanics of bundled semiflexible polymer networks.
Phys Rev Lett. 2007 Aug 24;99(8):088102. doi: 10.1103/PhysRevLett.99.088102. Epub 2007 Aug 22.
4
Statistical mechanics of semiflexible bundles of wormlike polymer chains.
Phys Rev Lett. 2007 Jul 27;99(4):048101. doi: 10.1103/PhysRevLett.99.048101. Epub 2007 Jul 25.
5
Intrinsic dynamic behavior of fascin in filopodia.
Mol Biol Cell. 2007 Oct;18(10):3928-40. doi: 10.1091/mbc.e07-04-0346. Epub 2007 Aug 1.
6
Elasticity of alpha-helical coiled coils.
Phys Rev Lett. 2006 Dec 15;97(24):248101. doi: 10.1103/PhysRevLett.97.248101.
7
Modelling microtubule patterns.
Nat Cell Biol. 2006 Nov;8(11):1204-11. doi: 10.1038/ncb1498.
8
Self-organization of microtubule bundles in anucleate fission yeast cells.
Nat Cell Biol. 2006 Oct;8(10):1108-13. doi: 10.1038/ncb1480. Epub 2006 Sep 24.
9
Role of fascin in filopodial protrusion.
J Cell Biol. 2006 Sep 11;174(6):863-75. doi: 10.1083/jcb.200603013.
10
Actin-binding proteins sensitively mediate F-actin bundle stiffness.
Nat Mater. 2006 Sep;5(9):748-53. doi: 10.1038/nmat1718. Epub 2006 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验