Suppr超能文献

胍基新霉素B对HIV-1 RNA螺旋的识别。

Guanidinoneomycin B recognition of an HIV-1 RNA helix.

作者信息

Staple David W, Venditti Vincenzo, Niccolai Neri, Elson-Schwab Lev, Tor Yitzhak, Butcher Samuel E

机构信息

Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.

出版信息

Chembiochem. 2008 Jan 4;9(1):93-102. doi: 10.1002/cbic.200700251.

Abstract

Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (T(m)) of the frameshift-site RNA by at least 10 degrees C, to a point at which a melting transition is not even observed in 2 M urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson-Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site.

摘要

氨基糖苷类抗生素是一类能与RNA结合的小分子药物。通过化学修饰,如胍基化,可以提高氨基糖苷类药物与RNA结合的亲和力和特异性。在此,我们报道了胍基新霉素B(GNB)与HIV-1移码位点的RNA螺旋的结合。GNB的结合使移码位点RNA的解链温度(T(m))至少升高10℃,达到在2M尿素中甚至观察不到解链转变的程度。通过多维异核NMR光谱方法获得了复合物的结构。我们还使用了一种新型顺磁探针测定法来确定GNB与RNA表面的结合位点。GNB与两组沃森-克里克碱基形成大沟接触,并与高度结构化的ACAA四环形成范德华接触。GNB的环I和环II嵌入大沟并与RNA形成结合界面,而环III和环IV暴露于溶剂中且无序。GNB的结合导致结合位点处大沟变宽。

相似文献

1
Guanidinoneomycin B recognition of an HIV-1 RNA helix.
Chembiochem. 2008 Jan 4;9(1):93-102. doi: 10.1002/cbic.200700251.
2
Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
J Mol Biol. 2005 Jun 24;349(5):1011-23. doi: 10.1016/j.jmb.2005.03.038. Epub 2005 Apr 1.
3
Solution structure of the HIV-1 frameshift inducing stem-loop RNA.
Nucleic Acids Res. 2003 Aug 1;31(15):4326-31. doi: 10.1093/nar/gkg654.
4
Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication.
ACS Chem Biol. 2011 Aug 19;6(8):857-64. doi: 10.1021/cb200082d. Epub 2011 Jun 15.
6
Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.
ACS Chem Biol. 2009 Oct 16;4(10):844-54. doi: 10.1021/cb900167m.
8
Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
J Mol Biol. 2000 Feb 18;296(2):659-71. doi: 10.1006/jmbi.1999.3464.

引用本文的文献

1
Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting.
Int J Mol Sci. 2025 Feb 3;26(3):1294. doi: 10.3390/ijms26031294.
2
Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting.
Antiviral Res. 2022 Dec;208:105452. doi: 10.1016/j.antiviral.2022.105452. Epub 2022 Oct 29.
3
Small molecule-RNA targeting: starting with the fundamentals.
Chem Commun (Camb). 2020 Nov 26;56(94):14744-14756. doi: 10.1039/d0cc06796b.
4
NMR Methods for Structural Characterization of Protein-Protein Complexes.
Front Mol Biosci. 2020 Jan 28;7:9. doi: 10.3389/fmolb.2020.00009. eCollection 2020.
5
Stapled Peptides Inhibitors: A New Window for Target Drug Discovery.
Comput Struct Biotechnol J. 2019 Feb 19;17:263-281. doi: 10.1016/j.csbj.2019.01.012. eCollection 2019.
6
Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
J Virol. 2016 Jul 11;90(15):6906-6917. doi: 10.1128/JVI.00149-16. Print 2016 Aug 1.
7
A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides.
Medchemcomm. 2016;7(1):50-68. doi: 10.1039/C5MD00453E. Epub 2015 Nov 19.
9
Dynamic motions of the HIV-1 frameshift site RNA.
Biophys J. 2015 Feb 3;108(3):644-54. doi: 10.1016/j.bpj.2014.12.006.

本文引用的文献

2
TAR-RNA recognition by a novel cyclic aminoglycoside analogue.
Nucleic Acids Res. 2006 Jul 19;34(12):3599-608. doi: 10.1093/nar/gkl494. Print 2006.
3
Toward the understanding of MNEI sweetness from hydration map surfaces.
Biophys J. 2006 May 1;90(9):3052-61. doi: 10.1529/biophysj.105.073171. Epub 2006 Feb 3.
6
Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions.
Chem Biol. 2005 Sep;12(9):961-71. doi: 10.1016/j.chembiol.2005.08.013.
7
RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex.
J Mol Biol. 2005 Aug 12;351(2):371-82. doi: 10.1016/j.jmb.2005.05.069.
8
Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
J Mol Biol. 2005 Jun 24;349(5):1011-23. doi: 10.1016/j.jmb.2005.03.038. Epub 2005 Apr 1.
9
Three-dimensional computation of atom depth in complex molecular structures.
Bioinformatics. 2005 Jun 15;21(12):2856-60. doi: 10.1093/bioinformatics/bti444. Epub 2005 Apr 12.
10
mRNA helicase activity of the ribosome.
Cell. 2005 Jan 14;120(1):49-58. doi: 10.1016/j.cell.2004.11.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验