Purslow Jeffrey A, Khatiwada Balabhadra, Bayro Marvin J, Venditti Vincenzo
Department of Chemistry, Iowa State University, Ames, IA, United States.
Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.
Front Mol Biosci. 2020 Jan 28;7:9. doi: 10.3389/fmolb.2020.00009. eCollection 2020.
Protein-protein interactions and the complexes thus formed are critical elements in a wide variety of cellular events that require an atomic-level description to understand them in detail. Such complexes typically constitute challenging systems to characterize and drive the development of innovative biophysical methods. NMR spectroscopy techniques can be applied to extract atomic resolution information on the binding interfaces, intermolecular affinity, and binding-induced conformational changes in protein-protein complexes formed in solution, in the cell membrane, and in large macromolecular assemblies. Here we discuss experimental techniques for the characterization of protein-protein complexes in both solution NMR and solid-state NMR spectroscopy. The approaches include solvent paramagnetic relaxation enhancement and chemical shift perturbations (CSPs) for the identification of binding interfaces, and the application of intermolecular nuclear Overhauser effect spectroscopy and residual dipolar couplings to obtain structural constraints of protein-protein complexes in solution. Complementary methods in solid-state NMR are described, with emphasis on the versatility provided by heteronuclear dipolar recoupling to extract intermolecular constraints in differentially labeled protein complexes. The methods described are of particular relevance to the analysis of membrane proteins, such as those involved in signal transduction pathways, since they can potentially be characterized by both solution and solid-state NMR techniques, and thus outline key developments in this frontier of structural biology.
蛋白质-蛋白质相互作用以及由此形成的复合物是众多细胞事件中的关键要素,这些事件需要原子水平的描述才能详细理解。此类复合物通常构成具有挑战性的系统,难以进行表征,并推动了创新生物物理方法的发展。核磁共振波谱技术可用于提取有关在溶液、细胞膜和大型大分子聚集体中形成的蛋白质-蛋白质复合物的结合界面、分子间亲和力以及结合诱导的构象变化的原子分辨率信息。在此,我们讨论用于在溶液核磁共振和固态核磁共振波谱中表征蛋白质-蛋白质复合物的实验技术。这些方法包括用于识别结合界面的溶剂顺磁弛豫增强和化学位移扰动(CSPs),以及应用分子间核Overhauser效应光谱和残余偶极耦合来获得溶液中蛋白质-蛋白质复合物的结构限制。描述了固态核磁共振中的补充方法,重点是异核偶极重耦合提供的通用性,以提取差异标记的蛋白质复合物中的分子间限制。所描述的方法与膜蛋白的分析特别相关,例如那些参与信号转导途径的膜蛋白,因为它们有可能通过溶液和固态核磁共振技术进行表征,从而概述了结构生物学这一前沿领域的关键进展。