Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK.
Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland.
Antiviral Res. 2022 Dec;208:105452. doi: 10.1016/j.antiviral.2022.105452. Epub 2022 Oct 29.
SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modeling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.
SARS-CoV-2 目前正在引发一场前所未有的大流行。虽然疫苗已经大规模接种,但我们仍然缺乏有效的大规模抗病毒疗法。在寻找针对保守结构的抗病毒药物时,我们专注于能够结合病毒 RNA 二级结构的分子。氨基糖苷类抗生素是一类已知能够与原核生物和真核生物的核糖体 RNA 相互作用的抗生素,先前的研究表明,它们通过与病毒 RNA 相互作用发挥抗病毒活性。在这里,我们表明氨基糖苷类抗生素遗传霉素对所有测试的 SARS-CoV-2 变体都具有抗病毒活性,在不同的细胞系中和在呼吸组织模型中以非毒性浓度发挥作用。作用机制是早期抑制 RNA 复制和与 SARS-CoV-2 的 -1 程序性核糖体移码 (PRF) 信号效率降低相关的蛋白表达。通过计算机模拟,我们已经确定了遗传霉素在移码 RNA 基序假结中的潜在结合位点。此外,我们通过虚拟筛选选择了另外一些与同一结合位点相互作用的具有更高效力的 RNA 结合化合物。