Suppr超能文献

空间平滑对功能磁共振成像(fMRI)组推断的影响。

Effects of spatial smoothing on fMRI group inferences.

作者信息

Mikl Michal, Marecek Radek, Hlustík Petr, Pavlicová Martina, Drastich Ales, Chlebus Pavel, Brázdil Milan, Krupa Petr

机构信息

Department of Biomedical Engineering, FEEC, Brno University of Technology, Koleni 4, 612 00 Brno, Czech Republic.

出版信息

Magn Reson Imaging. 2008 May;26(4):490-503. doi: 10.1016/j.mri.2007.08.006. Epub 2007 Dec 3.

Abstract

The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels - smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.

摘要

功能磁共振成像(fMRI)数据的分析在能够进行统计学检测激活之前需要多个数据预处理阶段。空间平滑是功能性脑成像数据分析中非常常见的预处理步骤。本研究全面探讨了空间平滑对fMRI组激活结果的影响。本研究使用了20名志愿者在视觉Oddball任务期间获得的数据。在两个层面上应用了使用半高全宽(FWHM)尺寸为2至30毫米、步长为2毫米的各向同性高斯滤波器内核进行空间平滑——在一般线性模型随机效应组分析生成统计参数图之前,对fMRI数据进行平滑和/或对单受试者对比文件进行平滑。定义了五个感兴趣区域,并评估了几个参数(最近局部最大值的坐标、t值、校正阈值、效应大小、残差值等)以检查空间平滑的效果。根据各种标准讨论了组分析的最佳滤波器大小。对于我们的实验,最佳FWHM约为8毫米。我们可以得出结论,对于稳健的实验和研究中有足够数量的受试者,单受试者推断的最佳FWHM与组推断的最佳FWHM相似(根据空间分辨率,约为8毫米)。对于稳健性较差的实验和研究中受试者较少的情况,组推断的最佳FWHM将高于单受试者推断的最佳FWHM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验