Wang Zhengxin, Rowe Daniel B, Li Xinyi, Andrew Brown D
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA.
Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI, USA.
J Appl Stat. 2024 Nov 4;52(6):1299-1314. doi: 10.1080/02664763.2024.2422392. eCollection 2025.
Functional magnetic resonance imaging (fMRI) enables indirect detection of brain activity changes via the blood-oxygen-level-dependent (BOLD) signal. Conventional analysis methods mainly rely on the real-valued magnitude of these signals. In contrast, research suggests that analyzing both real and imaginary components of the complex-valued fMRI (cv-fMRI) signal provides a more holistic approach that can increase power to detect neuronal activation. We propose a fully Bayesian model for brain activity mapping with cv-fMRI data. Our model accommodates temporal and spatial dynamics. Additionally, we propose a computationally efficient sampling algorithm, which enhances processing speed through image partitioning. Our approach is shown to be computationally efficient via image partitioning and parallel computation while being competitive with state-of-the-art methods. We support these claims with both simulated numerical studies and an application to real cv-fMRI data obtained from a finger-tapping experiment.
功能磁共振成像(fMRI)能够通过血氧水平依赖(BOLD)信号间接检测大脑活动变化。传统分析方法主要依赖于这些信号的实值幅度。相比之下,研究表明,分析复值fMRI(cv-fMRI)信号的实部和虚部能提供一种更全面的方法,可提高检测神经元激活的能力。我们提出了一种用于利用cv-fMRI数据进行脑活动映射的全贝叶斯模型。我们的模型考虑了时间和空间动态。此外,我们提出了一种计算效率高的采样算法,通过图像分割提高处理速度。我们的方法通过图像分割和并行计算显示出计算效率高,同时与现有最先进方法具有竞争力。我们通过模拟数值研究以及对从手指敲击实验获得的真实cv-fMRI数据的应用来支持这些说法。