Suppr超能文献

成为肌肉骨骼模拟专家的十个步骤:半个世纪的进展和未来展望。

Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future.

机构信息

Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.

Department of Mechanical Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5, Canada.

出版信息

J Biomech. 2023 Jun;154:111623. doi: 10.1016/j.jbiomech.2023.111623. Epub 2023 May 10.

Abstract

Over the past half-century, musculoskeletal simulations have deepened our knowledge of human and animal movement. This article outlines ten steps to becoming a musculoskeletal simulation expert so you can contribute to the next half-century of technical innovation and scientific discovery. We advocate looking to the past, present, and future to harness the power of simulations that seek to understand and improve mobility. Instead of presenting a comprehensive literature review, we articulate a set of ideas intended to help researchers use simulations effectively and responsibly by understanding the work on which today's musculoskeletal simulations are built, following established modeling and simulation principles, and branching out in new directions.

摘要

在过去的半个世纪里,肌肉骨骼模拟加深了我们对人类和动物运动的理解。本文概述了成为肌肉骨骼模拟专家的十个步骤,以便您为下一个半个世纪的技术创新和科学发现做出贡献。我们主张回顾过去、现在和未来,利用旨在理解和改善运动能力的模拟技术。我们没有进行全面的文献综述,而是提出了一系列观点,旨在通过了解当今肌肉骨骼模拟所基于的工作、遵循既定的建模和模拟原则以及开拓新的方向,帮助研究人员有效地、负责任地使用模拟技术。

相似文献

1
Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future.
J Biomech. 2023 Jun;154:111623. doi: 10.1016/j.jbiomech.2023.111623. Epub 2023 May 10.
2
Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
Proc Biol Sci. 2021 Mar 10;288(1946):20202432. doi: 10.1098/rspb.2020.2432. Epub 2021 Mar 3.
3
Abass Alavi: A giant in Nuclear Medicine turns 80 and is still going strong!
Hell J Nucl Med. 2018 Jan-Apr;21(1):85-87. doi: 10.1967/s002449910713. Epub 2018 Mar 20.
4
OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223. doi: 10.1371/journal.pcbi.1006223. eCollection 2018 Jul.
5
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.
6
Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
J Neuroeng Rehabil. 2021 Aug 16;18(1):126. doi: 10.1186/s12984-021-00919-y.
8
A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations.
Ann Biomed Eng. 2015 May;43(5):1098-111. doi: 10.1007/s10439-014-1181-7. Epub 2014 Nov 18.
9
On validation of multibody musculoskeletal models.
Proc Inst Mech Eng H. 2012 Feb;226(2):82-94. doi: 10.1177/0954411911431516.

引用本文的文献

2
Utility of synthetic musculoskeletal gaits for generalizable healthcare applications.
Nat Commun. 2025 Jul 4;16(1):6188. doi: 10.1038/s41467-025-61292-1.
3
Kinematic effects of sensorimotor foot orthoses on the gait of patients with patellofemoral pain-a randomized controlled trial.
Front Sports Act Living. 2025 Apr 30;7:1546821. doi: 10.3389/fspor.2025.1546821. eCollection 2025.
4
GaitDynamics: A Generative Foundation Model for Analyzing Human Walking and Running.
Res Sq. 2025 Mar 21:rs.3.rs-6206222. doi: 10.21203/rs.3.rs-6206222/v1.
6
7
ArborSim: Articulated, branching, OpenSim routing for constructing models of multi-jointed appendages with complex muscle-tendon architecture.
PLoS Comput Biol. 2024 Jul 5;20(7):e1012243. doi: 10.1371/journal.pcbi.1012243. eCollection 2024 Jul.
8
Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone loading, and the role of wearable sensors.
Front Bioeng Biotechnol. 2024 Apr 8;12:1377383. doi: 10.3389/fbioe.2024.1377383. eCollection 2024.
10

本文引用的文献

1
OpenCap: Human movement dynamics from smartphone videos.
PLoS Comput Biol. 2023 Oct 19;19(10):e1011462. doi: 10.1371/journal.pcbi.1011462. eCollection 2023 Oct.
2
Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.
PLoS Comput Biol. 2023 Aug 7;19(8):e1010712. doi: 10.1371/journal.pcbi.1010712. eCollection 2023 Aug.
3
Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics From Surface EMG.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:484-493. doi: 10.1109/TNSRE.2022.3226860. Epub 2023 Feb 1.
4
Leveraging Mobile Technology for Public Health Promotion: A Multidisciplinary Perspective.
Annu Rev Public Health. 2023 Apr 3;44:131-150. doi: 10.1146/annurev-publhealth-060220-041643. Epub 2022 Dec 21.
7
Assessing inertial measurement unit locations for freezing of gait detection and patient preference.
J Neuroeng Rehabil. 2022 Feb 13;19(1):20. doi: 10.1186/s12984-022-00992-x.
8
Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
PLoS One. 2022 Jan 5;17(1):e0261318. doi: 10.1371/journal.pone.0261318. eCollection 2022.
10
Ten simple rules for Global North researchers to stop perpetuating helicopter research in the Global South.
PLoS Comput Biol. 2021 Aug 19;17(8):e1009277. doi: 10.1371/journal.pcbi.1009277. eCollection 2021 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验